

WS-Trust 1.4

OASIS Standard incorporating Approved Errata 01 25 April 2012
Specification URIs
This version:
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.doc
(Authoritative)
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.html http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.pdf
Previous version:
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.doc (Authoritative) http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.pdf
Latest version:
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.doc
(Authoritative)
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.html http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.pdf
Technical Committee:
OASIS Web Services Secure Exchange (WS-SX) TC

 (
w
s
-
t
ru
s
t
-1
.
4-erra
t
a01-o
s
-
c
o
m
p
lete St
andard
s

T
ra
c
k

W
o
r
k

P
rodu
c
t
) (
2
5 A
pr
il

2
0
1
2
P
ag
e
36

o
f
 85
) (
Cop
y
r
ig
h
t

©
O
A
S
I
S

O
pe
n

2012
.

A
l
l

R
ig
h
t
s

R
e
s
er
v
ed
.
)
Chairs:

Kelvin Lawrence (klawrenc@us.ibm.com), IBM
Chris Kaler (ckaler@microsoft.com), Microsoft

Editors:
Anthony Nadalin (tonynad@microsoft.com), Microsoft Marc Goodner (mgoodner@microsoft.com), Microsoft Martin Gudgin (mgudgin@microsoft.com), Microsoft David Turner (david.turner@microsoft.com), Microsoft
Abbie Barbir (abbie.barbir@bankofamerica.com), Bank of America
Hans Granqvist (hgranqvist@verisign.com), VeriSign
Additional artifacts:
This prose specification is one component of a Work Product which also includes:
· XML schema: http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/cd/ws-trust.xsd
· WS-Trust 1.4 Errata 01. 25 April 2012. OASIS Approved Errata.
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os.html.
Related work:
This document replaces or supersedes:
· WS-Trust 1.4. 02 February 2009. OASIS Standard.
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html.
Declared XML namespace:
http://docs.oasis-open.org/ws-sx/ws-trust/200802

Abstract:
WS-Trust 1.4 defines extensions that build on [WS-Security] to provide a framework for requesting and issuing security tokens, and to broker trust relationships. This document incorporates errata approved by the Technical Committee on 25 April 2012.

Status:

This document was last revised or approved by the OASIS Web Services Secure Exchange (WS- SX) TC on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis- open.org/committees/ws-sx/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis- open.org/committees/ws-sx/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:
[WS-Trust-1.4-with-errata]
WS-Trust 1.4. 25 April 2012. OASIS Standard incorporating Approved Errata. http://docs.oasis- open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-errata01-os-complete.html.

Notices

Copyright © OASIS Open 2012. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/policies-guidelines/trademark for above guidance.

Table of Contents

Introduction	6
Goals and Non-Goals	6
Requirements	7
Namespace	7
Schema and WSDL Files	8
Terminology	8
Notational Conventions	9
Normative References 	10
Non-Normative References 	11
Web Services Trust Model 	12
Models for Trust Brokering and Assessment 	13
Token Acquisition 	13
Out-of-Band Token Acquisition 	14
Trust Bootstrap 	14
Security Token Service Framework 	15
Requesting a Security Token 	15
Returning a Security Token 	16
Binary Secrets 	18
Composition 	18
Issuance Binding 	19
Requesting a Security Token 	19
Request Security Token Collection 	21
Processing Rules 	23
Returning a Security Token Collection 	23
Returning a Security Token 	24
wsp:AppliesTo in RST and RSTR 	25
Requested References 	26
Keys and Entropy 	26
Returning Computed Keys 	27
Sample Response with Encrypted Secret 	28
Sample Response with Unencrypted Secret 	28
Sample Response with Token Reference 	29
Sample Response without Proof-of-Possession Token 	29
Zero or One Proof-of-Possession Token Case 	29
More Than One Proof-of-Possession Tokens Case 	30
Returning Security Tokens in Headers 	31
Renewal Binding 	33
Cancel Binding 	36
STS-initiated Cancel Binding 	37
Validation Binding 	39
Negotiation and Challenge Extensions 	42
Negotiation and Challenge Framework 	43
Signature Challenges 	43
User Interaction Challenge 	44
Challenge Format 	45
PIN and OTP Challenges 	48
Binary Exchanges and Negotiations 	49
Key Exchange Tokens 	49
Custom Exchanges 	50
Signature Challenge Example 	50
Challenge Examples 	52
Text and choice challenge 	52
PIN challenge 	54
PIN challenge with optimized response 	56
Custom Exchange Example 	57
Protecting Exchanges 	58
Authenticating Exchanges 	58
Key and Token Parameter Extensions 	60
On-Behalf-Of Parameters 	60
Key and Encryption Requirements 	60
Delegation and Forwarding Requirements 	65
Policies 	66
Authorized Token Participants 	67
Key Exchange Token Binding 	68
Error Handling 	70
Security Considerations 	71
Conformance 	73
Appendix A.	Key Exchange 	74
Ephemeral Encryption Keys 	74
Requestor-Provided Keys 	74
Issuer-Provided Keys 	75
Composite Keys 	75
Key Transfer and Distribution 	76
Direct Key Transfer 	76
Brokered Key Distribution 	76
Delegated Key Transfer 	77
Authenticated Request/Reply Key Transfer 	78
Perfect Forward Secrecy 	79
Appendix B.	WSDL 	80
Appendix C.	Acknowledgements 	82

1 [bookmark: _bookmark0]1	Introduction

2 [WS-Security] defines the basic mechanisms for providing secure messaging. This specification uses
3 these base mechanisms and defines additional primitives and extensions for security token exchange to
4 enable the issuance and dissemination of credentials within different trust domains. 5
6 In order to secure a communication between two parties, the two parties must exchange security
7 credentials (either directly or indirectly). However, each party needs to determine if they can "trust" the
8 asserted credentials of the other party. 9
10 In this specification we define extensions to [WS-Security] that provide:
11 	Methods for issuing, renewing, and validating security tokens.
12 	Ways to establish assess the presence of, and broker trust relationships. 13
14 Using these extensions, applications can engage in secure communication designed to work with the
15 general Web services framework, including WSDL service descriptions, UDDI businessServices and
16 bindingTemplates, and [SOAP] [SOAP2] messages. 17
18 To achieve this, this specification introduces a number of elements that are used to request security
19 tokens and broker trust relationships. 20
21 Section 12 is non-normative.

22 [bookmark: _bookmark1]1.1 Goals and Non-Goals

23 The goal of WS-Trust is to enable applications to construct trusted [SOAP] message exchanges. This
24 trust is represented through the exchange and brokering of security tokens. This specification provides a
25 protocol agnostic way to issue, renew, and validate these security tokens. 26
27 This specification is intended to provide a flexible set of mechanisms that can be used to support a range
28 of security protocols; this specification intentionally does not describe explicit fixed security protocols. 29
30 As with every security protocol, significant efforts must be applied to ensure that specific profiles and
31 message exchanges constructed using WS-Trust are not vulnerable to attacks (or at least that the attacks
32 are understood).
33
34 The following are explicit non-goals for this document:
35 	Password authentication
36 	Token revocation
37 	Management of trust policies 38
39 Additionally, the following topics are outside the scope of this document:
40 	Establishing a security context token

41 	Key derivation

42 [bookmark: _bookmark2]1.2 Requirements

43 The Web services trust specification must support a wide variety of security models. The following list
44 identifies the key driving requirements for this specification:
45 	Requesting and obtaining security tokens
46 	Establishing, managing and assessing trust relationships

47 [bookmark: _bookmark3]1.3 Namespace

48 Implementations of this specification MUST use the following [URI]s:

49 http://docs.oasis-open.org/ws-sx/ws-trust/200512
50 http://docs.oasis-open.org/ws-sx/ws-trust/200802

51 When using a URI to indicate that this version of Trust is being used http://docs.oasis-open.org/ws-sx/ws-
52 trust/200802 MUST be used.
53 Table 1 lists XML namespaces that are used in this specification. The choice of any namespace prefix is
54 arbitrary and not semantically significant.

55 Table 1: Prefixes and XML Namespaces used in this specification.

	
Prefix
	
Namespace
	
Specification(s)

	
S11
	
http://schemas.xmlsoap.org/soap/envelope/
	
[SOAP]

	
S12
	
http://www.w3.org/2003/05/soap-envelope
	
[SOAP12]

	
wsu
	
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss- wssecurity-utility-1.0.xsd
	
[WS-Security]

	
wsse
	
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss- wssecurity-secext-1.0.xsd
	
[WS-Security]

	
wsse11
	
http://docs.oasis-open.org/wss/oasis-wss-wsecurity-secext- 1.1.xsd
	
[WS-Security]

	
wst
	
http://docs.oasis-open.org/ws-sx/ws-trust/200512
	
This specification

	
wst14
	
http://docs.oasis-open.org/ws-sx/ws-trust/200802
	
This specification

	
ds
	
http://www.w3.org/2000/09/xmldsig#
	
[XML-Signature]

	
xenc
	
http://www.w3.org/2001/04/xmlenc#
	
[XML-Encrypt]

	
wsp
	
http://schemas.xmlsoap.org/ws/2004/09/policy or http://www.w3.org/ns/ws-policy
	
[WS-Policy]

	
wsa
	
http://www.w3.org/2005/08/addressing
	
[WS-Addressing]

	
xs
	
http://www.w3.org/2001/XMLSchema
	
[XML-Schema1] [XML-Schema2]

56 [bookmark: _bookmark4]1.4 Schema and WSDL Files

57 The schema [XML-Schema1], [XML-Schema2] for this specification can be located at:

58 http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust.xsd
59 http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.xsd

60
61 The WSDL for this specification can be located in Appendix II of this document as well as at:

62 http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.wsdl

63 In this document, reference is made to the wsu:Id attribute, wsu:Created and wsu:Expires
64 elements in the utility schema. These were added to the utility schema with the intent that other
65 specifications requiring such an ID or timestamp could reference it (as is done here).

66 [bookmark: _bookmark5]1.5 Terminology

67 Claim – A claim is a statement made about a client, service or other resource (e.g. name, identity, key,
68 group, privilege, capability, etc.).
69 Security Token – A security token represents a collection of claims.
70 Signed Security Token – A signed security token is a security token that is cryptographically endorsed
71 by a specific authority (e.g. an X.509 certificate or a Kerberos ticket).
72 Proof-of-Possession Token – A proof-of-possession (POP) token is a security token that contains
73 secret data that can be used to demonstrate authorized use of an associated security token. Typically,
74 although not exclusively, the proof-of-possession information is encrypted with a key known only to the
75 recipient of the POP token.
76 Digest – A digest is a cryptographic checksum of an octet stream.
77 Signature – A signature is a value computed with a cryptographic algorithm and bound to data in such a
78 way that intended recipients of the data can use the signature to verify that the data has not been altered
79 and/or has originated from the signer of the message, providing message integrity and authentication.
80 The signature can be computed and verified with symmetric key algorithms, where the same key is used
81 for signing and verifying, or with asymmetric key algorithms, where different keys are used for signing and
82 verifying (a private and public key pair are used).
83 Trust Engine – The trust engine of a Web service is a conceptual component that evaluates the security-
84 related aspects of a message as described in section 2 below.
85 Security Token Service – A security token service (STS) is a Web service that issues security tokens
86 (see [WS-Security]). That is, it makes assertions based on evidence that it trusts, to whoever trusts it (or
87 to specific recipients). To communicate trust, a service requires proof, such as a signature to prove
88 knowledge of a security token or set of security tokens. A service itself can generate tokens or it can rely
89 on a separate STS to issue a security token with its own trust statement (note that for some security token
90 formats this can just be a re-issuance or co-signature). This forms the basis of trust brokering.
91 Trust – Trust is the characteristic that one entity is willing to rely upon a second entity to execute a set of
92 actions and/or to make set of assertions about a set of subjects and/or scopes.

93
94
95
96
97
98
99
100

101
102

Direct Trust – Direct trust is when a relying party accepts as true all (or some subset of) the claims in the token sent by the requestor.
Direct Brokered Trust – Direct Brokered Trust is when one party trusts a second party who, in turn, trusts or vouches for, a third party.
Indirect Brokered Trust – Indirect Brokered Trust is a variation on direct brokered trust where the second party negotiates with the third party, or additional parties, to assess the trust of the third party.
Message Freshness – Message freshness is the process of verifying that the message has not been replayed and is currently valid.
We provide basic definitions for the security terminology used in this specification. Note that readers should be familiar with the [WS-Security] specification.

103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
1.5.1 [bookmark: _bookmark6]
Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Namespace URIs of the general form "some-URI" represents some application-dependent or context- dependent URI as defined in [URI].

This specification uses the following syntax to define outlines for messages:
· The syntax appears as an XML instance, but values in italics indicate data types instead of literal values.
· Characters are appended to elements and attributes to indicate cardinality:
o	"?" (0 or 1)
· "*" (0 or more)
· "+" (1 or more)
· The character "|" is used to indicate a choice between alternatives.
· The characters "(" and ")" are used to indicate that contained items are to be treated as a group with respect to cardinality or choice.
· The characters "[" and "]" are used to call out references and property names.
· Ellipses (i.e., "...") indicate points of extensibility. Additional children and/or attributes MAY be added at the indicated extension points but MUST NOT contradict the semantics of the parent and/or owner, respectively. By default, if a receiver does not recognize an extension, the receiver SHOULD ignore the extension; exceptions to this processing rule, if any, are clearly indicated below.
· XML namespace prefixes (see Table 1) are used to indicate the namespace of the element being defined.

Elements and Attributes defined by this specification are referred to in the text of this document using XPath 1.0 expressions. Extensibility points are referred to using an extended version of this syntax:
· An element extensibility point is referred to using {any} in place of the element name. This indicates that any element name can be used, from any namespace other than the namespace of this specification.

135
136
137
138

139
140
141
142
143
144
·
An attribute extensibility point is referred to using @{any} in place of the attribute name. This indicates that any attribute name can be used, from any namespace other than the namespace of this specification.

In this document reference is made to the wsu:Id attribute and the wsu:Created and wsu:Expires elements in a utility schema (http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility- 1.0.xsd). The wsu:Id attribute and the wsu:Created and wsu:Expires elements were added to the utility schema with the intent that other specifications requiring such an ID type attribute or timestamp element could reference it (as is done here).

145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
1.6 [bookmark: _bookmark7]
Normative References

[RFC2119]	S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, Harvard University, March 1997. http://www.ietf.org/rfc/rfc2119.txt
[bookmark: _bookmark8][RFC2246]	IETF Standard, "The TLS Protocol", January 1999.
http://www.ietf.org/rfc/rfc2246.txt
[bookmark: _bookmark9][SOAP]	W3C Note, "SOAP: Simple Object Access Protocol 1.1", 08 May 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
[bookmark: _bookmark10][SOAP12]	W3C Recommendation, "SOAP 1.2 Part 1: Messaging Framework", 24 June 2003.
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
[bookmark: _bookmark11][URI]	T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax", RFC 3986, MIT/LCS, Day Software, Adobe Systems, January 2005.
[bookmark: _bookmark12]http://www.ietf.org/rfc/rfc3986.txt
[WS-Addressing]	W3C Recommendation, "Web Services Addressing (WS-Addressing)", 9 May 2006.
[bookmark: _bookmark13]http://www.w3.org/TR/2006/REC-ws-addr-core-20060509
[bookmark: _bookmark14][WS-Policy]	W3C Recommendation, "Web Services Policy 1.5 - Framework", 04 September 2007.
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
W3C Member Submission, "Web Services Policy 1.2 - Framework", 25 April 2006.
[bookmark: _bookmark15]http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/
[WS-PolicyAttachment] W3C Recommendation, "Web Services Policy 1.5 - Attachment", 04 September 2007.
http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/
W3C Member Submission, "Web Services Policy 1.2 - Attachment", 25 April 2006.
http://www.w3.org/Submission/2006/SUBM-WS-PolicyAttachment- 20060425/
[bookmark: _bookmark16][WS-Security]	OASIS Standard, "OASIS Web Services Security: SOAP Message Security
1.1 (WS-Security 2004)", March 2004.
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message- security-1.0.pdf
OASIS Standard, "OASIS Web Services Security: SOAP Message Security
1.2 [bookmark: _bookmark17](WS-Security 2004)", February 2006.
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1- spec-os-SOAPMessageSecurity.pdf

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

200
201
202
203
204

205

206
207
208
209
210
211
212
213
214
215
216
217
[bookmark: _bookmark18]
[XML-C14N]	W3C Recommendation, "Canonical XML Version 1.0", 15 March 2001.
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
W3C Recommendation, "Canonical XML Version 1.1", 2 May 2008.
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/

[bookmark: _bookmark19][XML-Encrypt]	W3C Recommendation, "XML Encryption Syntax and Processing", 10 December 2002.
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
[bookmark: _bookmark20][XML-Schema1]	W3C Recommendation, "XML Schema Part 1: Structures Second Edition", 28 October 2004.
[bookmark: _bookmark21]http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
[XML-Schema2]	W3C Recommendation, "XML Schema Part 2: Datatypes Second Edition", 28 October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
[bookmark: _bookmark22][XML-Signature]	W3C Recommendation, "XML-Signature Syntax and Processing", 12 February 2002.
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
[W3C Recommendation, D. Eastlake et al. XML Signature Syntax and Processing (Second Edition). 10 June 2008. http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/

1.7 [bookmark: _bookmark23]Non-Normative References

[Kerberos]	J. Kohl and C. Neuman, "The Kerberos Network 149 Authentication Service (V5)," RFC 1510, September 1993.
http://www.ietf.org/rfc/rfc1510.txt
[WS-Federation]	"Web Services Federation Language," BEA, IBM, Microsoft, RSA Security, VeriSign, July 2003.
[WS-SecurityPolicy]	OASIS Committee Draft, “WS-SecurityPolicy 1.2”, September 2006
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512
[X509]	S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified Certificates Profile." http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-
REC-X.509-200003-I

218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247

248
249
250
[bookmark: _bookmark24]
2	Web Services Trust Model

The Web service security model defined in WS-Trust is based on a process in which a Web service can require that an incoming message prove a set of claims (e.g., name, key, permission, capability, etc.). If a message arrives without having the required proof of claims, the service SHOULD ignore or reject the message. A service can indicate its required claims and related information in its policy as described by [WS-Policy] and [WS-PolicyAttachment] specifications.

Authentication of requests is based on a combination of OPTIONAL network and transport-provided security and information (claims) proven in the message. Requestors can authenticate recipients using network and transport-provided security, claims proven in messages, and encryption of the request using a key known to the recipient.

One way to demonstrate authorized use of a security token is to include a digital signature using the associated secret key (from a proof-of-possession token). This allows a requestor to prove a required set of claims by associating security tokens (e.g., PKIX, X.509 certificates) with the messages.
· If the requestor does not have the necessary token(s) to prove required claims to a service, it can contact appropriate authorities (as indicated in the service's policy) and request the needed tokens with the proper claims. These "authorities", which we refer to as security token services, may in turn require their own set of claims for authenticating and authorizing the request for security tokens. Security token services form the basis of trust by issuing a range of security tokens that can be used to broker trust relationships between different trust domains.
· This specification also defines a general mechanism for multi-message exchanges during token acquisition. One example use of this is a challenge-response protocol that is also defined in this specification. This is used by a Web service for additional challenges to a requestor to ensure message freshness and verification of authorized use of a security token.

This model is illustrated in the figure below, showing that any requestor may also be a service, and that the Security Token Service is a Web service (that is, it MAY express policy and require security tokens).

This general security model – claims, policies, and security tokens – subsumes and supports several more specific models such as identity-based authorization, access control lists, and capabilities-based authorization. It allows use of existing technologies such as X.509 public-key certificates, XML-based

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

tokens, Kerberos shared-secret tickets, and even password digests. The general model in combination with the [WS-Security] and [WS-Policy] primitives is sufficient to construct higher-level key exchange, authentication, policy-based access control, auditing, and complex trust relationships.

In the figure above the arrows represent possible communication paths; the requestor MAY obtain a token from the security token service, or it MAY have been obtained indirectly. The requestor then demonstrates authorized use of the token to the Web service. The Web service either trusts the issuing security token service or MAY request a token service to validate the token (or the Web service MAY validate the token itself).

In summary, the Web service has a policy applied to it, receives a message from a requestor that possibly includes security tokens, and MAY have some protection applied to it using [WS-Security] mechanisms. The following key steps are performed by the trust engine of a Web service (note that the order of processing is non-normative):
1. Verify that the claims in the token are sufficient to comply with the policy and that the message conforms to the policy.
2. Verify that the attributes of the claimant are proven by the signatures. In brokered trust models, the signature MAY NOT verify the identity of the claimant – it MAY verify the identity of the intermediary, who MAY simply assert the identity of the claimant. The claims are either proven or not based on policy.
3. Verify that the issuers of the security tokens (including all related and issuing security token) are trusted to issue the claims they have made. The trust engine MAY need to externally verify or broker tokens (that is, send tokens to a security token service in order to exchange them for other security tokens that it can use directly in its evaluation).

If these conditions are met, and the requestor is authorized to perform the operation, then the service can process the service request.
In this specification we define how security tokens are requested and obtained from security token services and how these services MAY broker trust and trust policies so that services can perform step 3.
Network and transport protection mechanisms such as IPsec or TLS/SSL [RFC2246] can be used in conjunction with this specification to support different security requirements and scenarios. If available, requestors should consider using a network or transport security mechanism to authenticate the service when requesting, validating, or renewing security tokens, as an added level of security.

The [WS-Federation] specification builds on this specification to define mechanisms for brokering and federating trust, identity, and claims. Examples are provided in [WS-Federation] illustrating different trust scenarios and usage patterns.

288

289
290
291
2.1 [bookmark: _bookmark25]
Models for Trust Brokering and Assessment

This section outlines different models for obtaining tokens and brokering trust. These methods depend on whether the token issuance is based on explicit requests (token acquisition) or if it is external to a message flow (out-of-band and trust management).

292

293
294
2.2 [bookmark: _bookmark26]
Token Acquisition

As part of a message flow, a request MAY be made of a security token service to exchange a security token (or some proof) of one form for another. The exchange request can be made either by a requestor

295
296
297
298
299
300
301
302
303
304
305

or by another party on the requestor's behalf. If the security token service trusts the provided security token (for example, because it trusts the issuing authority of the provided security token), and the request can prove possession of that security token, then the exchange is processed by the security token service.

The previous paragraph illustrates an example of token acquisition in a direct trust relationship. In the case of a delegated request (one in which another party provides the request on behalf of the requestor rather than the requestor presenting it themselves), the security token service generating the new token MAY NOT need to trust the authority that issued the original token provided by the original requestor since it does trust the security token service that is engaging in the exchange for a new security token. The basis of the trust is the relationship between the two security token services.

306

307
308
309
310
311
2.3 [bookmark: _bookmark27]
Out-of-Band Token Acquisition

The previous section illustrated acquisition of tokens. That is, a specific request is made and the token is obtained. Another model involves out-of-band acquisition of tokens. For example, the token may be sent from an authority to a party without the token having been explicitly requested or the token may have been obtained as part of a third-party or legacy protocol. In any of these cases the token is not received in response to a direct SOAP request.

312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
2.4 [bookmark: _bookmark28]
Trust Bootstrap

An administrator or other trusted authority MAY designate that all tokens of a certain type are trusted (e.g. all Kerberos tokens from a specific realm or all X.509 tokens from a specific CA). The security token service maintains this as a trust axiom and can communicate this to trust engines to make their own trust decisions (or revoke it later), or the security token service MAY provide this function as a service to trusting services.
There are several different mechanisms that can be used to bootstrap trust for a service. These mechanisms are non-normative and are NOT REQUIRED in any way. That is, services are free to bootstrap trust and establish trust among a domain of services or extend this trust to other domains using any mechanism.

Fixed trust roots – The simplest mechanism is where the recipient has a fixed set of trust relationships. It will then evaluate all requests to determine if they contain security tokens from one of the trusted roots.

Trust hierarchies – Building on the trust roots mechanism, a service MAY choose to allow hierarchies of trust so long as the trust chain eventually leads to one of the known trust roots. In some cases the recipient MAY require the sender to provide the full hierarchy. In other cases, the recipient MAY be able to dynamically fetch the tokens for the hierarchy from a token store.

Authentication service – Another approach is to use an authentication service. This can essentially be thought of as a fixed trust root where the recipient only trusts the authentication service. Consequently, the recipient forwards tokens to the authentication service, which replies with an authoritative statement (perhaps a separate token or a signed document) attesting to the authentication.

335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
3 [bookmark: _bookmark29]
Security Token Service Framework

This section defines the general framework used by security token services for token issuance.

A requestor sends a request, and if the policy permits and the recipient's requirements are met, then the requestor receives a security token response. This process uses the <wst:RequestSecurityToken> and <wst:RequestSecurityTokenResponse> elements respectively. These elements are passed as the payload to specific WSDL ports (described in section 1.4) that are implemented by security token services.

This framework does not define specific actions; each binding defines its own actions.
When requesting and returning security tokens additional parameters can be included in requests, or provided in responses to indicate server-determined (or used) values. If a requestor specifies a specific value that isn't supported by the recipient, then the recipient MAY fault with a wst:InvalidRequest (or a more specific fault code), or they MAY return a token with their chosen parameters that the requestor MAY then choose to discard because it doesn't meet their needs.

The requesting and returning of security tokens can be used for a variety of purposes. Bindings define how this framework is used for specific usage patterns. Other specifications MAY define specific bindings and profiles of this mechanism for additional purposes.
In general, it is RECOMMENDED that sources of requests be authenticated; however, in some cases an anonymous request MAY be appropriate. Requestors MAY make anonymous requests and it is up to the recipient's policy to determine if such requests are acceptable. If not a fault SHOULD be generated (but is NOT REQUIRED to be returned for denial-of-service reasons).

The [WS-Security] specification defines and illustrates time references in terms of the dateTime type defined in XML Schema. It is RECOMMENDED that all time references use this type. It is further RECOMMENDED that all references be in UTC time. Requestors and receivers SHOULD NOT rely on other applications supporting time resolution finer than milliseconds. Implementations MUST NOT generate time instants that specify leap seconds. Also, any required clock synchronization is outside the scope of this document.

The following sections describe the basic structure of token request and response elements identifying the general mechanisms and most common sub-elements. Specific bindings extend these elements with binding-specific sub-elements. That is, sections 3.1 and 3.2 should be viewed as patterns or templates on which specific bindings build.

370

371
372
373
374
375
376
3.1 [bookmark: _bookmark30]
Requesting a Security Token

The <wst:RequestSecurityToken> element (RST) is used to request a security token (for any purpose). This element SHOULD be signed by the requestor, using tokens contained/referenced in the request that are relevant to the request. If using a signed request, the requestor MUST prove any required claims to the satisfaction of the security token service.
If a parameter is specified in a request that the recipient doesn't understand, the recipient SHOULD fault. The syntax for this element is as follows:

377
378
379
380
381
382

383
384
385

386
387
388
389
390

391
392
393
394
395

396
397
398
399
400
401
402

403
404
405

406
407
408
409
410

411
412
413
414
415

416
417
418

419

420
421
422
423

<wst:RequestSecurityToken Context="..." xmlns:wst="...">
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
<wst:SecondaryParameters>...</wst:SecondaryParameters>
...
</wst:RequestSecurityToken>

The following describes the attributes and elements listed in the schema overview above:
/wst:RequestSecurityToken
This is a request to have a security token issued.

/wst:RequestSecurityToken/@Context
This OPTIONAL URI specifies an identifier/context for this request. All subsequent RSTR elements relating to this request MUST carry this attribute. This, for example, allows the request and subsequent responses to be correlated. Note that no ordering semantics are provided; that is left to the application/transport.

/wst:RequestSecurityToken/wst:TokenType
This OPTIONAL element describes the type of security token requested, specified as a URI. That is, the type of token that will be returned in the
<wst:RequestSecurityTokenResponse> message. Token type URIs are typically defined in token profiles such as those in the OASIS WSS TC.

/wst:RequestSecurityToken/wst:RequestType
The mandatory RequestType element is used to indicate, using a URI, the class of function that is being requested. The allowed values are defined by specific bindings and profiles of WS-Trust. Frequently this URI corresponds to the [WS-Addressing] Action URI provided in the message header as described in the binding/profile; however, specific bindings can use the Action URI to provide more details on the semantic processing while this parameter specifies the general class of operation (e.g., token issuance). This parameter is REQUIRED.

/wst:RequestSecurityToken/wst:SecondaryParameters
If specified, this OPTIONAL element contains zero or more valid RST parameters (except
wst:SecondaryParameters) for which the requestor is not the originator.

The STS processes parameters that are direct children of the <wst:RequestSecurityToken> element. If a parameter is not specified as a direct child, the STS MAY look for the parameter within the <wst:SecondaryParameters> element (if present). The STS MAY filter secondary parameters if it doesn't trust them or feels they are inappropriate or introduce risk (or based on its own policy).

/wst:RequestSecurityToken/{any}
This is an extensibility mechanism to allow additional elements to be added. This allows requestors to include any elements that the service can use to process the token request. As well, this allows bindings to define binding-specific extensions. If an element is found that is not understood, the recipient SHOULD fault.

/wst:RequestSecurityToken/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be added. If an attribute is found that is not understood, the recipient SHOULD fault.

3.2 [bookmark: _bookmark31]Returning a Security Token

The <wst:RequestSecurityTokenResponse> element (RSTR) is used to return a security token or response to a security token request. The <wst:RequestSecurityTokenResponseCollection> element (RSTRC) MUST be used to return a security token or response to a security token request on the final response.

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

448
449
450
451
452

453
454
455

456
457
458
459
460
461

462
463

464
465
466
467
468
469
470
471

It should be noted that any type of parameter specified as input to a token request MAY be present on response in order to specify the exact parameters used by the issuer. Specific bindings describe appropriate restrictions on the contents of the RST and RSTR elements.
In general, the returned token SHOULD be considered opaque to the requestor. That is, the requestor SHOULD NOT be required to parse the returned token. As a result, information that the requestor may desire, such as token lifetimes, SHOULD be returned in the response. Specifically, any field that the requestor includes SHOULD be returned. If an issuer doesn't want to repeat all input parameters, then, at a minimum, if the issuer chooses a value different from what was requested, the issuer SHOULD include the parameters that were changed.
If a parameter is specified in a response that the recipient doesn't understand, the recipient SHOULD fault.
In this specification the RSTR message is illustrated as being passed in the body of a message. However, there are scenarios where the RSTR must be passed in conjunction with an existing application message. In such cases the RSTR (or the RSTR collection) MAY be specified inside a header block. The exact location is determined by layered specifications and profiles; however, the RSTR MAY be located in the <wsse:Security> header if the token is being used to secure the message (note that the RSTR SHOULD occur before any uses of the token). The combination of which header block contains the RSTR and the value of the OPTIONAL @Context attribute indicate how the RSTR is processed. It should be noted that multiple RSTR elements can be specified in the header blocks of a message.
It should be noted that there are cases where an RSTR is issued to a recipient who did not explicitly issue an RST (e.g. to propagate tokens). In such cases, the RSTR MAY be passed in the body or in a header block.
The syntax for this element is as follows:

<wst:RequestSecurityTokenResponse Context="..." xmlns:wst="...">
<wst:TokenType>...</wst:TokenType>
<wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>
...
</wst:RequestSecurityTokenResponse>

The following describes the attributes and elements listed in the schema overview above:
/wst:RequestSecurityTokenResponse
This is the response to a security token request.

/wst:RequestSecurityTokenResponse/@Context
This OPTIONAL URI specifies the identifier from the original request. That is, if a context URI is specified on a RST, then it MUST be echoed on the corresponding RSTRs. For unsolicited RSTRs (RSTRs that aren't the result of an explicit RST), this represents a hint as to how the recipient is expected to use this token. No values are pre-defined for this usage; this is for use by specifications that leverage the WS-Trust mechanisms.

/wst:RequestSecurityTokenResponse/wst:TokenType
This OPTIONAL element specifies the type of security token returned.

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken
This OPTIONAL element is used to return the requested security token. Normally the requested security token is the contents of this element but a security token reference MAY be used instead. For example, if the requested security token is used in securing the message, then the security token is placed into the <wsse:Security> header (as described in [WS-Security]) and a
<wsse:SecurityTokenReference> element is placed inside of the
<wst:RequestedSecurityToken> element to reference the token in the <wsse:Security>
header. The response MAY contain a token reference where the token is located at a URI

472
473
474
475

476
477
478

479
480
481

482

483
484
485
486
487
488
489
490
491
492

493
494
495

outside of the message. In such cases the recipient is assumed to know how to fetch the token from the URI address or specified endpoint reference. It should be noted that when the token is not returned as part of the message it cannot be secured, so a secure communication mechanism SHOULD be used to obtain the token.

/wst:RequestSecurityTokenResponse/{any}
This is an extensibility mechanism to allow additional elements to be added. If an element is found that is not understood, the recipient SHOULD fault.

/wst:RequestSecurityTokenResponse/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be added. If an attribute is found that is not understood, the recipient SHOULD fault.

3.3 [bookmark: _bookmark32]Binary Secrets

It should be noted that in some cases elements include a key that is not encrypted. Consequently, the
<xenc:EncryptedData> cannot be used. Instead, the <wst:BinarySecret> element can be used. This SHOULD only be used when the message is otherwise protected (e.g. transport security is used or the containing element is encrypted). This element contains a base64 encoded value that represents an arbitrary octet sequence of a secret (or key). The general syntax of this element is as follows (note that the ellipses below represent the different containers in which this element MAY appear, for example, a
<wst:Entropy> or <wst:RequestedProofToken> element):
.../wst:BinarySecret
This element contains a base64 encoded binary secret (or key). This can be either a symmetric key, the private portion of an asymmetric key, or any data represented as binary octets.

.../wst:BinarySecret/@Type
This OPTIONAL attribute indicates the type of secret being encoded. The pre-defined values are listed in the table below:

	URI
	Meaning

	http://docs.oasis-open.org/ws-sx/ws- trust/200512/AsymmetricKey
	The private portion of a public key token is returned – this URI assumes both parties agree on the format of the octets; other bindings and profiles MAY define additional URIs with specific formats

	http://docs.oasis-open.org/ws-sx/ws- trust/200512/SymmetricKey
	A symmetric key token is returned (default)

	http://docs.oasis-open.org/ws-sx/ws- trust/200512/Nonce
	A raw nonce value (typically passed as entropy or key material)

496
497
498

499

500
501
502
503

.../wst:BinarySecret/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be added. If an attribute is found that is not understood, the recipient SHOULD fault.

3.4 [bookmark: _bookmark33]Composition

The sections below, as well as other documents, describe a set of bindings using the model framework described in the above sections. Each binding describes the amount of extensibility and composition with other parts of WS-Trust that is permitted. Additional profile documents MAY further restrict what can be specified in a usage of a binding.

504

505
506
507
508

509
510

511
512
513

514

515

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
4 [bookmark: _bookmark34]
Issuance Binding

Using the token request framework, this section defines bindings for requesting security tokens to be issued:
Issue – Based on the credential provided/proven in the request, a new token is issued, possibly with new proof information.

For this binding, the following [WS-Addressing] actions are defined to enable specific processing context to be conveyed to the recipient:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Issue http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal

For this binding, the <wst:RequestType> element uses the following URI:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue

The mechanisms defined in this specification apply to both symmetric and asymmetric keys. As an example, a Kerberos KDC could provide the services defined in this specification to make tokens available; similarly, so can a public key infrastructure. In such cases, the issuing authority is the security token service. It should be noted that in practice, asymmetric key usage often differs as it is common to reuse existing asymmetric keys rather than regenerate due to the time cost and desire to map to a common public key. In such cases a request might be made for an asymmetric token providing the public key and proving ownership of the private key. The public key is then used in the issued token.

A public key directory is not really a security token service per se; however, such a service MAY implement token retrieval as a form of issuance. It is also possible to bridge environments (security technologies) using PKI for authentication or bootstrapping to a symmetric key.

This binding provides a general token issuance action that can be used for any type of token being requested. Other bindings MAY use separate actions if they have specialized semantics.

This binding supports the OPTIONAL use of exchanges during the token acquisition process as well as the OPTIONAL use of the key extensions described in a later section. Additional profiles are needed to describe specific behaviors (and exclusions) when different combinations are used.

534

535
536
537

538
539
540
541
542
543
544
545
546
547
4.1 [bookmark: _bookmark35]
Requesting a Security Token

When requesting a security token to be issued, the following OPTIONAL elements MAY be included in the request and MAY be provided in the response. The syntax for these elements is as follows (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityToken xmlns:wst="...">
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
<wsp:AppliesTo>...</wsp:AppliesTo>
<wst:Claims Dialect="...">...</wst:Claims>
<wst:Entropy>
<wst:BinarySecret>...</wst:BinarySecret>
</wst:Entropy>
<wst:Lifetime>

548
549
550
551

552
553
554
555
556
557
558
559
560
561

562
563
564
565
566
567
568
569

570
571
572

573
574
575
576
577

578
579
580
581
582

583
584
585
586
587
588
589

590
591
592
593
594
595
596

<wsu:Created>...</wsu:Created>
<wsu:Expires>...</wsu:Expires>
</wst:Lifetime>
</wst:RequestSecurityToken>

The following describes the attributes and elements listed in the schema overview above:
/wst:RequestSecurityToken/wst:TokenType
If this OPTIONAL element is not specified in an issue request, it is RECOMMENDED that the OPTIONAL element <wsp:AppliesTo> be used to indicate the target where this token will be used (similar to the Kerberos target service model). This assumes that a token type can be inferred from the target scope specified. That is, either the <wst:TokenType> or the
<wsp:AppliesTo> element SHOULD be defined within a request. If both the
<wst:TokenType> and <wsp:AppliesTo> elements are defined, the <wsp:AppliesTo> element takes precedence (for the current request only) in case the target scope requires a specific type of token.

/wst:RequestSecurityToken/wsp:AppliesTo
This OPTIONAL element specifies the scope for which this security token is desired – for example, the service(s) to which this token applies. Refer to [WS-PolicyAttachment] for more information. Note that either this element or the <wst:TokenType> element SHOULD be defined in a <wst:RequestSecurityToken> message. In the situation where BOTH fields have values, the <wsp:AppliesTo> field takes precedence. This is because the issuing service is more likely to know the type of token to be used for the specified scope than the requestor (and because returned tokens should be considered opaque to the requestor).

/wst:RequestSecurityToken/wst:Claims
This OPTIONAL element requests a specific set of claims. Typically, this element contains REQUIRED and/or OPTIONAL claim information identified in a service's policy.

/wst:RequestSecurityToken/wst:Claims/@Dialect
This REQUIRED attribute contains a URI that indicates the syntax used to specify the set of requested claims along with how that syntax SHOULD be interpreted. No URIs are defined by this specification; it is expected that profiles and other specifications will define these URIs and the associated syntax.

/wst:RequestSecurityToken/wst:Entropy
This OPTIONAL element allows a requestor to specify entropy that is to be used in creating the key. The value of this element SHOULD be either a <xenc:EncryptedKey> or
<wst:BinarySecret> depending on whether or not the key is encrypted. Secrets SHOULD be
encrypted unless the transport/channel is already providing encryption.

/wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret
This OPTIONAL element specifies a base64 encoded sequence of octets representing the requestor's entropy. The value can contain either a symmetric or the private key of an asymmetric key pair, or any suitable key material. The format is assumed to be understood by the requestor because the value space MAY be (a) fixed, (b) indicated via policy, (c) inferred from the indicated token aspects and/or algorithms, or (d) determined from the returned token. (See Section 3.3)

/wst:RequestSecurityToken/wst:Lifetime
This OPTIONAL element is used to specify the desired valid time range (time window during which the token is valid for use) for the returned security token. That is, to request a specific time interval for using the token. The issuer is not obligated to honor this range – they MAY return a more (or less) restrictive interval. It is RECOMMENDED that the issuer return this element with issued tokens (in the RSTR) so the requestor knows the actual validity period without having to parse the returned token.

597
598
599
600
601
602
603

604
605
606
607
608
609

610

611
612
613
614
615
616

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

/wst:RequestSecurityToken/wst:Lifetime/wsu:Created
This OPTIONAL element represents the creation time of the security token. Within the SOAP processing model, creation is the instant that the infoset is serialized for transmission. The creation time of the token SHOULD NOT differ substantially from its transmission time. The difference in time SHOULD be minimized. If this time occurs in the future then this is a request for a postdated token. If this attribute isn't specified, then the current time is used as an initial period.

/wst:RequestSecurityToken/wst:Lifetime/wsu:Expires
This OPTIONAL element specifies an absolute time representing the upper bound on the validity time period of the requested token. If this attribute isn't specified, then the service chooses the lifetime of the security token. A Fault code (wsu:MessageExpired) is provided if the recipient wants to inform the requestor that its security semantics were expired. A service MAY issue a Fault indicating the security semantics have expired.

The following is a sample request. In this example, a username token is used as the basis for the request as indicated by the use of that token to generate the signature. The username (and password) is encrypted for the recipient and a reference list element is added. The <ds:KeyInfo> element refers to a <wsse:UsernameToken> element that has been encrypted to protect the password (note that the token has the wsu:Id of "myToken" prior to encryption). The request is for a custom token type to be returned.

<S11:Envelope xmlns:S11="..." xmlns:wsu="..." xmlns:wsse="..." xmlns:xenc="..." xmlns:wst="...">
<S11:Header>
...
<wsse:Security>
<xenc:ReferenceList>...</xenc:ReferenceList>
<xenc:EncryptedData Id="encUsername">...</xenc:EncryptedData>
<ds:Signature xmlns:ds="...">
...
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#myToken"/>
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
...
</S11:Header>
<S11:Body wsu:Id="req">
<wst:RequestSecurityToken>
<wst:TokenType> http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
</wst:RequestSecurityToken>
</S11:Body>
</S11:Envelope>

646

647
648
649
650
4.2 [bookmark: _bookmark36]
Request Security Token Collection

There are occasions where efficiency is important. Reducing the number of messages in a message exchange pattern can greatly improve efficiency. One way to do this in the context of WS-Trust is to avoid repeated round-trips for multiple token requests. An example is requesting an identity token as well as tokens that offer other claims in a single batch request operation.

651

652
653
654
655
656
657
658
659
660
661
662

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

697
698
699
700
701
702
703

To give an example, imagine an automobile parts supplier that wishes to offer parts to an automobile manufacturer. To interact with the manufacturer web service the parts supplier may have to present a number of tokens, such as an identity token as well as tokens with claims, such as tokens indicating various certifications to meet supplier requirements.

It is possible for the supplier to authenticate to a trust server and obtain an identity token and then subsequently present that token to obtain a certification claim token. However, it may be much more efficient to request both in a single interaction (especially when more than two tokens are required).

Here is an example of a collection of authentication requests corresponding to this scenario:

<wst:RequestSecurityTokenCollection xmlns:wst="...">

<!-- identity token request -->
<wst:RequestSecurityToken Context="http://www.example.com/1">
<wst:TokenType>
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile- 1.1#SAMLV2.0
</wst:TokenType>
<wst:RequestType>http://docs.oasis-open.org/ws-sx/ws- trust/200512/BatchIssue</wst:RequestType>
<wsp:AppliesTo xmlns:wsp="..." xmlns:wsa="...">
<wsa:EndpointReference>
<wsa:Address>http://manufacturer.example.com/</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
<wsp:PolicyReference xmlns:wsp="..." URI='http://manufacturer.example.com/IdentityPolicy' />
</wst:RequestSecurityToken>

<!-- certification claim token request -->
<wst:RequestSecurityToken Context="http://www.example.com/2">
<wst:TokenType>
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile- 1.1#SAMLV2.0
</wst:TokenType>
<wst:RequestType>http://docs.oasis-open.org/ws-sx/ws-trust/200512
/BatchIssue</wst:RequestType>
<wst:Claims xmlns:wsp="..."> http://manufacturer.example.com/certification
</wst:Claims>
<wsp:PolicyReference URI='http://certificationbody.example.org/certificationPolicy’ />
</wst:RequestSecurityToken>
</wst:RequestSecurityTokenCollection>

The following describes the attributes and elements listed in the overview above:

/wst:RequestSecurityTokenCollection
The RequestSecurityTokenCollection (RSTC) element is used to provide multiple RST requests. One or more RSTR elements in an RSTRC element are returned in the response to the RequestSecurityTokenCollection.

704
[bookmark: _bookmark37]
4.2.1 Processing Rules

705
706
707

The RequestSecurityTokenCollection (RSTC) element contains 2 or more
RequestSecurityToken elements.

	708
	1.
	The single RequestSecurityTokenResponseCollection response MUST contain at least

	709
	
	one RSTR element corresponding to each RST element in the request. A RSTR element

	710
	
	corresponds to an RST element if it has the same Context attribute value as the RST element.

	711
	
	Note: Each request MAY generate more than one RSTR sharing the same Context attribute

	712
	
	value

	713
	
	a. Specifically there is no notion of a deferred response

	714
	
	b. If any RST request results in an error, then no RSTRs will be returned and a SOAP Fault

	715
	
	will be generated as the entire response.

	716
	2.
	Every RST in the request MUST use an action URI value in the RequestType element that is a

	717
	
	batch version corresponding to the non-batch version, in particular one of the following:

	718
	
	· http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchIssue

	719
	
	· http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchValidate

	720
	
	· http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchRenew

	721
	
	· http://docs.oasis-open.org/ws-sx/ws-trust/200512/BatchCancel

	722
	
	

	723
	
	These URIs MUST also be used for the [WS-Addressing] actions defined to enable specific

	724
	
	processing context to be conveyed to the recipient.

	725
	
	

	726
	
	Note: that these operations require that the service can either succeed on all the RST requests or

	727
	
	MUST NOT perform any partial operation.

	728
	
	

	729
	3.
	All Signatures MUST reference the entire RSTC. One or more Signatures referencing the entire

	730
	
	collection MAY be used.

	731
	4.
	No negotiation or other multi-leg authentication mechanisms are allowed in batch requests or

	732
	
	responses to batch requests; the communication with STS is limited to one RSTC request and

	733
	
	one RSTRC response.

	734
	5.
	This mechanism requires that every RST in a RSTC is to be handled by the single endpoint

	735
	
	processing the RSTC.

	736
	
	

737
738
739

If any error occurs in the processing of the RSTC or one of its contained RSTs, a SOAP fault MUST be
generated for the entire batch request so no RSTC element will be returned.

740

741
742
743
744
745
4.3 [bookmark: _bookmark38]
Returning a Security Token Collection

The <wst:RequestSecurityTokenResponseCollection> element (RSTRC) MUST be used to return a security token or response to a security token request on the final response. Security tokens can only be returned in the RSTRC on the final leg. One or more <wst:RequestSecurityTokenResponse> elements are returned in the RSTRC.
The syntax for this element is as follows:

746
747
748

749
750
751
752

753
754

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...">
<wst:RequestSecurityTokenResponse>...</wst:RequestSecurityTokenResponse> +
</wst:RequestSecurityTokenResponseCollection>

The following describes the attributes and elements listed in the schema overview above:
/wst:RequestSecurityTokenResponseCollection
This element contains one or more <wst:RequestSecurityTokenResponse> elements for a security token request on the final response.

/wst:RequestSecurityTokenResponseCollection/wst:RequestSecurityTokenResponse
See section 4.4 for the description of the <wst:RequestSecurityTokenResponse> element.

755

756
757
758

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

776
777
778
779
780
781

782
783
784
785
786
787

788
789
790
791
792
793
794
795
4.4 [bookmark: _bookmark39]
Returning a Security Token

When returning a security token, the following OPTIONAL elements MAY be included in the response. Security tokens can only be returned in the RSTRC on the final leg. The syntax for these elements is as follows (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityTokenResponse xmlns:wst="...">
<wst:TokenType>...</wst:TokenType>
<wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>
...
<wsp:AppliesTo xmlns:wsp="...”>...</wsp:AppliesTo>
<wst:RequestedAttachedReference>
...
</wst:RequestedAttachedReference>
<wst:RequestedUnattachedReference>
...
</wst:RequestedUnattachedReference>
<wst:RequestedProofToken>...</wst:RequestedProofToken>
<wst:Entropy>
<wst:BinarySecret>...</wst:BinarySecret>
</wst:Entropy>
<wst:Lifetime>...</wst:Lifetime>
</wst:RequestSecurityTokenResponse>

The following describes the attributes and elements listed in the schema overview above:
/wst:RequestSecurityTokenResponse/wsp:AppliesTo
This OPTIONAL element specifies the scope to which this security token applies. Refer to [WS- PolicyAttachment] for more information. Note that if an <wsp:AppliesTo> was specified in the request, the same scope SHOULD be returned in the response (if a <wsp:AppliesTo> is returned).

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken
This OPTIONAL element is used to return the requested security token. This element is OPTIONAL, but it is REQUIRED that at least one of <wst:RequestedSecurityToken> or
<wst:RequestedProofToken> be returned unless there is an error or part of an on-going
message exchange (e.g. negotiation). If returning more than one security token see section 4.3, Returning Multiple Security Tokens.

/wst:RequestSecurityTokenResponse/wst:RequestedAttachedReference
Since returned tokens are considered opaque to the requestor, this OPTIONAL element is specified to indicate how to reference the returned token when that token doesn't support references using URI fragments (XML ID). This element contains a
<wsse:SecurityTokenReference> element that can be used verbatim to reference the token (when the token is placed inside a message). Typically tokens allow the use of wsu:Id so this element isn't required. Note that a token MAY support multiple reference mechanisms; this indicates the issuer’s preferred mechanism. When encrypted tokens are returned, this element is

796
797
798

799
800
801
802
803
804
805

806
807
808
809
810
811
812
813
814
815
816

817
818
819
820
821

822
823
824

825
826
827
828

not needed since the <xenc:EncryptedData> element supports an ID reference. If this element is not present in the RSTR then the recipient can assume that the returned token (when present in a message) supports references using URI fragments.

/wst:RequestSecurityTokenResponse/wst:RequestedUnattachedReference
In some cases tokens need not be present in the message. This OPTIONAL element is specified to indicate how to reference the token when it is not placed inside the message. This element contains a <wsse:SecurityTokenReference> element that can be used verbatim to reference the token (when the token is not placed inside a message) for replies. Note that a token MAY support multiple external reference mechanisms; this indicates the issuer’s preferred mechanism.

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken
This OPTIONAL element is used to return the proof-of-possession token associated with the requested security token. Normally the proof-of-possession token is the contents of this element but a security token reference MAY be used instead. The token (or reference) is specified as the contents of this element. For example, if the proof-of-possession token is used as part of the securing of the message, then it is placed in the <wsse:Security> header and a
<wsse:SecurityTokenReference> element is used inside of the
<wst:RequestedProofToken> element to reference the token in the <wsse:Security>
header. This element is OPTIONAL, but it is REQUIRED that at least one of
<wst:RequestedSecurityToken> or <wst:RequestedProofToken> be returned unless there is an error.

/wst:RequestSecurityTokenResponse/wst:Entropy
This OPTIONAL element allows an issuer to specify entropy that is to be used in creating the key. The value of this element SHOULD be either a <xenc:EncryptedKey> or
<wst:BinarySecret> depending on whether or not the key is encrypted (it SHOULD be unless
the transport/channel is already encrypted).

/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret
This OPTIONAL element specifies a base64 encoded sequence of octets represent the responder's entropy. (See Section 3.3)

/wst:RequestSecurityTokenResponse/wst:Lifetime
This OPTIONAL element specifies the lifetime of the issued security token. If omitted the lifetime is unspecified (not necessarily unlimited). It is RECOMMENDED that if a lifetime exists for a token that this element be included in the response.

829

830
831
832
833
834
835
836
837
838
839
840
841
842
4.4.1 [bookmark: _bookmark40]
wsp:AppliesTo in RST and RSTR

Both the requestor and the issuer can specify a scope for the issued token using the <wsp:AppliesTo> element. If a token issuer cannot provide a token with a scope that is at least as broad as that requested by the requestor then it SHOULD generate a fault. This section defines some rules for interpreting the various combinations of provided scope:
· If neither the requestor nor the issuer specifies a scope then the scope of the issued token is implied.
· If the requestor specifies a scope and the issuer does not then the scope of the token is assumed to be that specified by the requestor.
· If the requestor does not specify a scope and the issuer does specify a scope then the scope of the token is as defined by the issuers scope
· If both requestor and issuer specify a scope then there are two possible outcomes:
· If both the issuer and requestor specify the same scope then the issued token has that scope.

843
844
845
846
847
848
849
·
If the issuer specifies a wider scope than the requestor then the issued token has the scope specified by the issuer.
· The requestor and issuer MUST agree on the version of [WS-Policy] used to specify the scope of the issued token. The Trust13 assertion in [WS-SecurityPolicy] provides a mechanism to communicate which version of [WS-Policy] is to be used.

The following table summarizes the above rules:

	Requestor wsp:AppliesTo
	Issuer wsp:AppliesTo
	Results

	Absent
	Absent
	OK. Implied scope.

	Present
	Absent
	OK. Issued token has scope specified by requestor.

	Absent
	Present
	OK. Resulting token has scope specified by issuer.

	Present
	Present and matches Requestor
	OK.

	Present
	Present and specifies a scope greater than specified by the requestor
	OK. Issuer scope.

850

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
4.4.2 [bookmark: _bookmark41]
Requested References

The token issuer can OPTIONALLY provide <wst:RequestedAttachedReference> and/or
<wst:RequestedUnattachedReference> elements in the RSTR. It is assumed that all token types can be referred to directly when present in a message. This section outlines the expected behaviour on behalf of clients and servers with respect to various permutations:
· If a <wst:RequestedAttachedReference> element is NOT returned in the RSTR then the client SHOULD assume that the token can be referenced by ID. Alternatively, the client MAY use token- specific knowledge to construct an STR.
· If a <wst:RequestedAttachedReference> element is returned in the RSTR then the token cannot be referred to by ID. The supplied STR MUST be used to refer to the token.
· If a <wst:RequestedUnattachedReference> element is returned then the server MAY reference the token using the supplied STR when sending responses back to the client. Thus the client MUST be prepared to resolve the supplied STR to the appropriate token. Note: the server SHOULD NOT send the token back to the client as the token is often tailored specifically to the server (i.e. it may be encrypted for the server). References to the token in subsequent messages, whether sent by the client or the server, that omit the token MUST use the supplied STR.

866

867
868
869
870
871
872
873
4.4.3 [bookmark: _bookmark42]
Keys and Entropy

The keys resulting from a request are determined in one of three ways: specific, partial, and omitted.
· In the case of specific keys, a <wst:RequestedProofToken> element is included in the response which indicates the specific key(s) to use unless the key was provided by the requestor (in which case there is no need to return it).
· In the case of partial, the <wst:Entropy> element is included in the response, which indicates partial key material from the issuer (not the full key) that is combined (by each party) with the requestor's entropy to determine the resulting key(s). In this case a <wst:ComputedKey>

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

element is returned inside the <wst:RequestedProofToken> to indicate how the key is computed.
· In the case of omitted, an existing key is used or the resulting token is not directly associated with a key.

The decision as to which path to take is based on what the requestor provides, what the issuer provides, and the issuer's policy.
· If the requestor does not provide entropy or issuer rejects the requestor's entropy, a proof-of- possession token MUST be returned with an issuer-provided key.
· If the requestor provides entropy and the responder doesn't (issuer uses the requestor's key), then a proof-of-possession token need not be returned.
· If both the requestor and the issuer provide entropy, then the partial form is used. Ideally both entropies are specified as encrypted values and the resultant key is never used (only keys derived from it are used). As noted above, the <wst:ComputedKey> element is returned inside the <wst:RequestedProofToken> to indicate how the key is computed.

The following table illustrates the rules described above:

	Requestor
	Issuer
	Results

	Provide Entropy
	Uses requestor entropy as key
	No proof-of-possession token is returned.

	
	
	

	
	Provides entropy
	No keys returned, key(s) derived using entropy from both sides according to method identified in response

	
	Issues own key (rejects requestor's entropy)
	Proof-of-possession token contains issuer's key(s)

	No Entropy provided
	Issues own key
	Proof-of-possession token contains issuer's key(s)

	
	
	

	
	Does not issue key
	No proof-of-possession token

891

892
893
894
895
896
897
898
899
900
901
902
903

904
905
4.4.4 [bookmark: _bookmark43]
Returning Computed Keys

As previously described, in some scenarios the key(s) resulting from a token request are not directly returned and must be computed. One example of this is when both parties provide entropy that is combined to make the shared secret. To indicate a computed key, the <wst:ComputedKey> element MUST be returned inside the <wst:RequestedProofToken> to indicate how the key is computed. The following illustrates a syntax overview of the <wst:ComputedKey> element:
<wst:RequestSecurityTokenResponseCollection xmlns:wst="...">
<wst:RequestSecurityTokenResponse>
<wst:RequestedProofToken>
<wst:ComputedKey>...</wst:ComputedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

The following describes the attributes and elements listed in the schema overview above:

906
907
908
909

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken/wst:ComputedKey
The value of this element is a URI describing how to compute the key. While this can be extended by defining new URIs in other bindings and profiles, the following URI pre-defines one computed key mechanism:

	URI
	Meaning

	http://docs.oasis-open.org/ws-sx/ws- trust/200512/CK/PSHA1
	The key is computed using P_SHA1 from the TLS specification to generate a bit stream using entropy from both sides. The exact form is:
key = P_SHA1 (EntREQ, EntRES)
It is RECOMMENDED that EntREQ be a string of length at least 128 bits.

910

This element MUST be returned when key(s) resulting from the token request are computed.

911

912
913
914
915

916
917
918
919
920
921
922
923
924
925
926
927
928
929
4.4.5 [bookmark: _bookmark44]
Sample Response with Encrypted Secret

The following illustrates the syntax of a sample security token response. In this example the token requested in section 4.1 is returned. Additionally a proof-of-possession token element is returned containing the secret key associated with the <wst:RequestedSecurityToken> encrypted for the requestor (note that this assumes that the requestor has a shared secret with the issuer or a public key).

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey Id="newProof" xmlns:xenc="...">
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

930

931
932

933
934
935
936
937
938
939
940
941
942
943
944
4.4.6 [bookmark: _bookmark45]
Sample Response with Unencrypted Secret

The following illustrates the syntax of an alternative form where the secret is passed in the clear because the transport is providing confidentiality:

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<wst:BinarySecret>...</wst:BinarySecret>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

945

946
947
948

949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

964
965
966
967
968
4.4.7 [bookmark: _bookmark46]
Sample Response with Token Reference

If the returned token doesn't allow the use of the wsu:Id attribute, then a
<wst:RequestedAttachedReference> is returned as illustrated below. The following illustrates the syntax of the returned token has a URI which is referenced.

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken ID="urn:fabrikam123:5445" xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedAttachedReference>
<wsse:SecurityTokenReference xmlns:wsse="...”>
<wsse:Reference URI="urn:fabrikam123:5445"/>
</wsse:SecurityTokenReference>
</wst:RequestedAttachedReference>
...
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

In the example above, the recipient may place the returned custom token directly into a message and include a signature using the provided proof-of-possession token. The specified reference is then placed into the <ds:KeyInfo> of the signature and directly references the included token without requiring the requestor to understand the details of the custom token format.

969

970
971
972
973

974
975
976
977
978
979
980
981
982

983
4.4.8 [bookmark: _bookmark47]
Sample Response without Proof-of-Possession Token

The following illustrates the syntax of a response that doesn't include a proof-of-possession token. For example, if the basis of the request were a public key token and another public key token is returned with the same public key, the proof-of-possession token from the original token is reused (no new proof-of- possession token is required).

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

984

985
986
987
988
989
990
991

992
993
994
4.4.9 [bookmark: _bookmark48]
Zero or One Proof-of-Possession Token Case

In the zero or single proof-of-possession token case, a primary token and one or more tokens are returned. The returned tokens either use the same proof-of-possession token (one is returned), or no proof-of-possession token is returned. The tokens are returned (one each) in the response. The following example illustrates this case. The following illustrates the syntax of a supporting security token is returned that has no separate proof-of-possession token as it is secured using the same proof-of-possession token that was returned.

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>

995
996
997
998
999
1000
1001
1002
1003
1004
1005

<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey Id="newProof" xmlns:xenc="...”>
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

1006

1007
1008
1009
1010

1011
1012
1013
1014
1015
1016
1017
1018
1019

1020
1021
1022
1023
1024

1025
1026

1027
1028

1029
1030

1031
1032

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
4.4.10 [bookmark: _bookmark49]
More Than One Proof-of-Possession Tokens Case

The second case is where multiple security tokens are returned that have separate proof-of-possession tokens. As a result, the proof-of-possession tokens, and possibly lifetime and other key parameters elements, MAY be different. To address this scenario, the body MAY be specified using the syntax illustrated below:

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
...
</wst:RequestSecurityTokenResponse>
<wst:RequestSecurityTokenResponse>
...
</wst:RequestSecurityTokenResponse>
...
</wst:RequestSecurityTokenResponseCollection>

The following describes the attributes and elements listed in the schema overview above:
/wst:RequestSecurityTokenResponseCollection
This element is used to provide multiple RSTR responses, each of which has separate key information. One or more RSTR elements are returned in the collection. This MUST always be used on the final response to the RST.

/wst:RequestSecurityTokenResponseCollection/wst:RequestSecurityTokenResponse
Each RequestSecurityTokenResponse element is an individual RSTR.

/wst:RequestSecurityTokenResponseCollection/{any}
This is an extensibility mechanism to allow additional elements, based on schemas, to be added.

/wst:RequestSecurityTokenResponseCollection/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be added.

The following illustrates the syntax of a response that includes multiple tokens each, in a separate RSTR, each with their own proof-of-possession token.

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey Id="newProofA">
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
<wst:RequestSecurityTokenResponse>

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

<wst:RequestedSecurityToken>
<abc:CustomToken xmlns:abc="...">
...
</abc:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey Id="newProofB xmlns:xenc="...”>
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

1059

1060
1061
1062
1063
1064
1065

1066
1067
1068
1069
1070

1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
[bookmark: _bookmark50]
4.5 Returning Security Tokens in Headers

In certain situations it is useful to issue one or more security tokens as part of a protocol other than RST/RSTR. This typically requires that the tokens be passed in a SOAP header. The tokens present in that element can then be referenced from elsewhere in the message. This section defines a specific header element, whose type is the same as that of the <wst:RequestSecurityTokenCollection> element (see Section 4.3), that can be used to carry issued tokens (and associated proof tokens, references etc.) in a message.

<wst:IssuedTokens xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
...
</wst:RequestSecurityTokenResponse>+
</wst:IssuedTokens>

The following describes the attributes and elements listed in the schema overview above:
/wst:IssuedTokens
This header element carries one or more issued security tokens. This element schema is defined using the RequestSecurityTokenResponse schema type.
/wst:IssuedTokens/wst:RequestSecurityTokenResponse
This element MUST appear at least once. Its meaning and semantics are as defined in Section 4.2.
/wst:IssuedTokens/{any}
This is an extensibility mechanism to allow additional elements, based on schemas, to be added.

/wst:IssuedTokens/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be added.

There MAY be multiple instances of the <wst:IssuedTokens> header in a given message. Such instances MAY be targeted at the same actor/role. Intermediaries MAY add additional
<wst:IssuedTokens> header elements to a message. Intermediaries SHOULD NOT modify any
<wst:IssuedTokens> header already present in a message.

It is RECOMMENDED that the <wst:IssuedTokens> header be signed to protect the integrity of the issued tokens and of the issuance itself. If confidentiality protection of the <wst:IssuedTokens> header is REQUIRED then the entire header MUST be encrypted using the <wsse11:EncryptedHeader> construct. This helps facilitate re-issuance by the receiving party as that party can re-encrypt the entire header for another party rather than having to extract and re-encrypt portions of the header.

1094

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

The following example illustrates a response that includes multiple <wst:IssuedTokens> headers.

<?xml version="1.0" encoding="utf-8"?>
<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsp="..." xmlns:ds="..."
xmlns:x="...">
<S11:Header>
<wst:IssuedTokens>
<wst:RequestSecurityTokenResponse>
<wsp:AppliesTo>
<x:SomeContext1 />
</wsp:AppliesTo>
<wst:RequestedSecurityToken>
...
</wst:RequestedSecurityToken>
...
</wst:RequestSecurityTokenResponse>
<wst:RequestSecurityTokenResponse>
<wsp:AppliesTo>
<x:SomeContext1 />
</wsp:AppliesTo>
<wst:RequestedSecurityToken>
...
</wst:RequestedSecurityToken>
...
</wst:RequestSecurityTokenResponse>
</wst:IssuedTokens>
<wst:IssuedTokens S11:role="http://example.org/somerole" >
<wst:RequestSecurityTokenResponse>
<wsp:AppliesTo>
<x:SomeContext2 />
</wsp:AppliesTo>
<wst:RequestedSecurityToken>
...
</wst:RequestedSecurityToken>
...
</wst:RequestSecurityTokenResponse>
</wst:IssuedTokens>
</S11:Header>
<S11:Body>
...
</S11:Body>
</S11:Envelope>

1135

1136
1137
1138
1139

1140
1141
1142

1143
1144
1145

1146

1147

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

1172
1173
1174
1175
1176
1177
5 [bookmark: _bookmark51]
Renewal Binding

Using the token request framework, this section defines bindings for requesting security tokens to be renewed:
Renew – A previously issued token with expiration is presented (and possibly proven) and the same token is returned with new expiration semantics.

For this binding, the following actions are defined to enable specific processing context to be conveyed to the recipient:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Renew http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal

For this binding, the <wst:RequestType> element uses the following URI:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew

For this binding the token to be renewed is identified in the <wst:RenewTarget> element and the OPTIONAL <wst:Lifetime> element MAY be specified to request a specified renewal duration.

Other extensions MAY be specified in the request (and the response), but the key semantics (size, type, algorithms, scope, etc.) MUST NOT be altered during renewal. Token services MAY use renewal as an opportunity to rekey, so the renewal responses MAY include a new proof-of-possession token as well as entropy and key exchange elements.

The request MUST prove authorized use of the token being renewed unless the recipient trusts the requestor to make third-party renewal requests. In such cases, the third-party requestor MUST prove its identity to the issuer so that appropriate authorization occurs.

The original proof information SHOULD be proven during renewal.

The renewal binding allows the use of exchanges during the renewal process. Subsequent profiles MAY define restriction around the usage of exchanges.

During renewal, all key bearing tokens used in the renewal request MUST have an associated signature. All non-key bearing tokens MUST be signed. Signature confirmation is RECOMMENDED on the renewal response.

The renewal binding also defines several extensions to the request and response elements. The syntax for these extension elements is as follows (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
<wst:RenewTarget>...</wst:RenewTarget>
<wst:AllowPostdating/>

1178
1179

1180
1181
1182
1183

1184
1185
1186
1187

1188
1189

1190
1191
1192
1193
1194

1195
1196
1197
1198
1199
1200
1201
1202

1203

1204
1205
1206
1207
1208
1209
1210
1211
1212

1213
1214
1215
1216

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228

<wst:Renewing Allow=”...” OK=”...”/>
</wst:RequestSecurityToken>

/wst:RequestSecurityToken/wst:RenewTarget
This REQUIRED element identifies the token being renewed. This MAY contain a
<wsse:SecurityTokenReference> pointing at the token to be renewed or it MAY directly contain the token to be renewed.

/wst:RequestSecurityToken/wst:AllowPostdating
This OPTIONAL element indicates that returned tokens SHOULD allow requests for postdated tokens. That is, this allows for tokens to be issued that are not immediately valid (e.g., a token that can be used the next day).

/wst:RequestSecurityToken/wst:Renewing
This OPTIONAL element is used to specify renew semantics for types that support this operation.

/wst:RequestSecurityToken/wst:Renewing/@Allow
This OPTIONAL Boolean attribute is used to request a renewable token. If not specified, the default value is true. A renewable token is one whose lifetime can be extended. This is done using a renewal request. The recipient MAY allow renewals without demonstration of authorized use of the token or they MAY fault.

/wst:RequestSecurityToken/wst:Renewing/@OK
This OPTIONAL Boolean attribute is used to indicate that a renewable token is acceptable if the requested duration exceeds the limit of the issuance service. That is, if true then tokens can be renewed after their expiration. It should be noted that the token is NOT valid after expiration for any operation except renewal. The default for this attribute is false. It NOT RECOMMENDED to use this as it can leave you open to certain types of security attacks. Issuers MAY restrict the period after expiration during which time the token can be renewed. This window is governed by the issuer's policy.

The following example illustrates a request for a custom token that can be renewed.

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<wst:Renewing/>
</wst:RequestSecurityToken>

The following example illustrates a subsequent renewal request and response (note that for brevity only the request and response are illustrated). Note that the response includes an indication of the lifetime of the renewed token.

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew
</wst:RequestType>
<wst:RenewTarget>
... reference to previously issued token ...
</wst:RenewTarget>
</wst:RequestSecurityToken>

1229
1230
1231
1232
1233
1234
1235
1236

<wst:RequestSecurityTokenResponse xmlns:wst="...”>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>
<wst:Lifetime>...</wst:Lifetime>
...
</wst:RequestSecurityTokenResponse>

1237

1238
1239
1240
1241
1242
1243
1244

1245
1246
1247

1248
1249
1250

1251

1252

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

1269
1270
1271
1272
1273

1274
1275
1276
1277

1278

1279
6 [bookmark: _bookmark52]
Cancel Binding

Using the token request framework, this section defines bindings for requesting security tokens to be cancelled:
Cancel – When a previously issued token is no longer needed, the Cancel binding can be used to cancel the token, terminating its use. After canceling a token at the issuer, a STS MUST not validate or renew the token. A STS MAY initiate the revocation of a token, however, revocation is out of scope of this specification and a client MUST NOT rely on it. If a client needs to ensure the validity of a token, it MUST validate the token at the issuer.

For this binding, the following actions are defined to enable specific processing context to be conveyed to the recipient:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Cancel http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/CancelFinal

For this binding, the <wst:RequestType> element uses the following URI:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel

Extensions MAY be specified in the request (and the response), but the semantics are not defined by this binding.

The request MUST prove authorized use of the token being cancelled unless the recipient trusts the requestor to make third-party cancel requests. In such cases, the third-party requestor MUST prove its identity to the issuer so that appropriate authorization occurs.
In a cancel request, all key bearing tokens specified MUST have an associated signature. All non-key bearing tokens MUST be signed. Signature confirmation is RECOMMENDED on the closure response.

A cancelled token is no longer valid for authentication and authorization usages. On success a cancel response is returned. This is an RSTR message with the
<wst:RequestedTokenCancelled> element in the body. On failure, a Fault is raised. It should be
noted that the cancel RSTR is informational. That is, the security token is cancelled once the cancel request is processed.

The syntax of the request is as follows:

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:RequestType>...</wst:RequestType>
...
<wst:CancelTarget>...</wst:CancelTarget>
</wst:RequestSecurityToken>

/wst:RequestSecurityToken/wst:CancelTarget
This REQUIRED element identifies the token being cancelled. Typically this contains a
<wsse:SecurityTokenReference> pointing at the token, but it could also carry the token directly.

The following example illustrates a request to cancel a custom token.

<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsse="...">

1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308

<S11:Header>
<wsse:Security>
...
</wsse:Security>
</S11:Header>
<S11:Body>
<wst:RequestSecurityToken>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel
</wst:RequestType>
<wst:CancelTarget>
...
</wst:CancelTarget>
</wst:RequestSecurityToken>
</S11:Body>
</S11:Envelope>

The following example illustrates a response to cancel a custom token.

<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsse="...">
<S11:Header>
<wsse:Security>
...
</wsse:Security>
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse>
<wst:RequestedTokenCancelled/>
</wst:RequestSecurityTokenResponse>
</S11:Body>
</S11:Envelope>

 (
w
s
-
t
ru
s
t
-1
.
4-erra
t
a01-o
s
-
c
o
m
p
lete St
andard
s

T
ra
c
k

W
o
r
k

P
rodu
c
t
) (
2
5 A
pr
il

2
0
1
2
P
ag
e
56

o
f
 85
) (
Cop
y
r
ig
h
t

©
O
A
S
I
S

O
pe
n

2012
.

A
l
l

R
ig
h
t
s

R
e
s
er
v
ed
.
)

1309

1310
1311
1312
1313
1314
1315

1316
1317
1318

1319

1320

1321

1322
1323
1324
1325
1326
1327
1328
1329
[bookmark: _bookmark53]
6.1 STS-initiated Cancel Binding

Using the token request framework, this section defines an OPTIONAL binding for requesting security tokens to be cancelled by the STS:
STS-initiated Cancel – When a previously issued token becomes invalid on the STS, the STS- initiated Cancel binding can be used to cancel the token, terminating its use. After canceling a token, a STS MUST not validate or renew the token. This binding can be only used when STS can send one-way messages to the original token requestor.

For this binding, the following actions are defined to enable specific processing context to be conveyed to the recipient:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/STSCancel

For this binding, the <wst:RequestType> element uses the following URI:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/STSCancel

Extensions MAY be specified in the request, but the semantics are not defined by this binding.

The request MUST prove authorized use of the token being cancelled unless the recipient trusts the requestor to make third-party cancel requests. In such cases, the third-party requestor MUST prove its identity to the issuer so that appropriate authorization occurs.
In a cancel request, all key bearing tokens specified MUST have an associated signature. All non-key bearing tokens MUST be signed.

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340

1341
1342
1343
1344
1345

1346
1347
1348
1349

1350

1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368

A cancelled token is no longer valid for authentication and authorization usages.

The mechanism to determine the availability of STS-initiated Cancel binding on the STS is out of scope of this specification. Similarly, how the client communicates its endpoint address to the STS so that it can send the STSCancel messages to the client is out of scope of this specification. This functionality is implementation specific and can be solved by different mechanisms that are not in scope for this specification.
This is a one-way operation, no response is returned from the recipient of the message. The syntax of the request is as follows:
<wst:RequestSecurityToken xmlns:wst="...”>
<wst:RequestType>...</wst:RequestType>
...
<wst:CancelTarget>...</wst:CancelTarget>
</wst:RequestSecurityToken>

/wst:RequestSecurityToken/wst:CancelTarget
This REQUIRED element identifies the token being cancelled. Typically this contains a
<wsse:SecurityTokenReference> pointing at the token, but it could also carry the token directly.

The following example illustrates a request to cancel a custom token.

<?xml version="1.0" encoding="utf-8"?>
<S11:Envelope xmlns:S11="..." xmlns:wst="..." xmlns:wsse="...">
<S11:Header>
<wsse:Security>
...
</wsse:Security>
</S11:Header>
<S11:Body>
<wst:RequestSecurityToken>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/STSCancel
</wst:RequestType>
<wst:CancelTarget>
...
</wst:CancelTarget>
</wst:RequestSecurityToken>
</S11:Body>
</S11:Envelope>

1369

1370
1371
1372
1373

1374

1375
1376
1377
1378
1379
1380

1381
1382
1383

1384
1385

1386

1387
1388
1389
1390

1391

1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406

1407
1408
1409
1410
1411
7 [bookmark: _bookmark54]
Validation Binding

Using the token request framework, this section defines bindings for requesting security tokens to be validated:
Validate – The validity of the specified security token is evaluated and a result is returned. The result MAY be a status, a new token, or both.

It should be noted that for this binding, a SOAP Envelope MAY be specified as a "security token" if the requestor desires the envelope to be validated. In such cases the recipient SHOULD understand how to process a SOAP envelope and adhere to SOAP processing semantics (e.g., mustUnderstand) of the version of SOAP used in the envelope. Otherwise, the recipient SHOULD fault.
For this binding, the following actions are defined to enable specific processing context to be conveyed to the recipient:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Validate http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal

For this binding, the <wst:RequestType> element contains the following URI:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate

The request provides a token upon which the request is based and OPTIONAL tokens. As well, the OPTIONAL <wst:TokenType> element in the request can indicate desired type response token. This MAY be any supported token type or it MAY be the following URI indicating that only status is desired:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Status

For some use cases a status token is returned indicating the success or failure of the validation. In other cases a security token MAY be returned and used for authorization. This binding assumes that the validation requestor and provider are known to each other and that the general issuance parameters beyond requesting a token type, which is OPTIONAL, are not needed (note that other bindings and profiles could define different semantics).

For this binding an applicability scope (e.g., <wsp:AppliesTo>) need not be specified. It is assumed that the applicability of the validation response relates to the provided information (e.g. security token) as understood by the issuing service.

The validation binding does not allow the use of exchanges.

The RSTR for this binding carries the following element even if a token is returned (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
<wst:ValidateTarget>... </wst:ValidateTarget>
...

1412

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

1423

1424
1425
1426
1427

1428
1429
1430
1431

1432
1433
1434

</wst:RequestSecurityToken>

<wst:RequestSecurityTokenResponse xmlns:wst="..."	>
<wst:TokenType>...</wst:TokenType>
<wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>
...
<wst:Status>
<wst:Code>...</wst:Code>
<wst:Reason>...</wst:Reason>
</wst:Status>
</wst:RequestSecurityTokenResponse>

/wst:RequestSecurityToken/wst:ValidateTarget
This REQUIRED element identifies the token being validated. Typically this contains a
<wsse:SecurityTokenReference> pointing at the token, but could also carry the token directly.

/wst:RequestSecurityTokenResponse/wst:Status
When a validation request is made, this element MUST be in the response. The code value indicates the results of the validation in a machine-readable form. The accompanying text element allows for human textual display.

/wst:RequestSecurityTokenResponse/wst:Status/wst:Code
This REQUIRED URI value provides a machine-readable status code. The following URIs are predefined, but others MAY be used.

	URI
	Description

	http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid
	The Trust service successfully validated the input

	http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/invalid
	The Trust service did not successfully validate the input

1435
1436

1437
1438
1439

1440
1441
1442
1443
1444
1445
1446
1447

1448

1449
1450
1451
1452

/wst:RequestSecurityTokenResponse/wst:Status/wst:Reason
This OPTIONAL string provides human-readable text relating to the status code.

The following illustrates the syntax of a validation request and response. In this example no token is requested, just a status.

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Status
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate
</wst:RequestType>
</wst:RequestSecurityToken>

<wst:RequestSecurityTokenResponse xmlns:wst="...”>
<wst:TokenType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Status
</wst:TokenType>

1453
1454
1455
1456
1457
1458
1459

1460
1461

1462
1463
1464
1465
1466
1467
1468
1469

1470

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482

<wst:Status>
<wst:Code>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid
</wst:Code>
</wst:Status>
...
</wst:RequestSecurityTokenResponse>

The following illustrates the syntax of a validation request and response. In this example a custom token is requested indicating authorized rights in addition to the status.

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate
</wst:RequestType>
</wst:RequestSecurityToken>

<wst:RequestSecurityTokenResponse xmlns:wst="...”>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:Status>
<wst:Code>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid
</wst:Code>
</wst:Status>
<wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>
...
</wst:RequestSecurityTokenResponse>

1483

1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

1498

1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
8 [bookmark: _bookmark55]
Negotiation and Challenge Extensions

The general security token service framework defined above allows for a simple request and response for security tokens (possibly asynchronous). However, there are many scenarios where a set of exchanges between the parties is REQUIRED prior to returning (e.g., issuing) a security token. This section describes the extensions to the base WS-Trust mechanisms to enable exchanges for negotiation and challenges.

There are potentially different forms of exchanges, but one specific form, called "challenges", provides mechanisms in addition to those described in [WS-Security] for authentication. This section describes how general exchanges are issued and responded to within this framework. Other types of exchanges include, but are not limited to, negotiation, tunneling of hardware-based processing, and tunneling of legacy protocols.

The process is straightforward (illustrated here using a challenge):

1. A requestor sends, for example, a <wst:RequestSecurityToken> message with a timestamp.
2. The recipient does not trust the timestamp and issues a
<wst:RequestSecurityTokenResponse> message with an embedded challenge.
3. The requestor sends a <wst:RequestSecurityTokenReponse> message with an answer to the challenge.
4. The recipient issues a <wst:RequestSecurityTokenResponseCollection> message with the issued security token and OPTIONAL proof-of-possession token.

It should be noted that the requestor might challenge the recipient in either step 1 or step 3. In which case, step 2 or step 4 contains an answer to the initiator's challenge. Similarly, it is possible that steps 2 and 3 could iterate multiple times before the process completes (step 4).

The two services can use [WS-SecurityPolicy] to state their requirements and preferences for security tokens and encryption and signing algorithms (general policy intersection). This section defines mechanisms for legacy and more sophisticated types of negotiations.

1515

1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
8.1 [bookmark: _bookmark56]
Negotiation and Challenge Framework

The general mechanisms defined for requesting and returning security tokens are extensible. This section describes the general model for extending these to support negotiations and challenges.

The exchange model is as follows:
1. A request is initiated with a <wst:RequestSecurityToken> that identifies the details of the request (and MAY contain initial negotiation/challenge information)
2. A response is returned with a <wst:RequestSecurityTokenResponse> that contains additional negotiation/challenge information. Optionally, this MAY return token information in the form of a <wst:RequestSecurityTokenResponseCollection> (if the exchange is two legs long).
3. If the exchange is not complete, the requestor uses a
<wst:RequestSecurityTokenResponse> that contains additional negotiation/challenge information.
4. The process repeats at step 2 until the negotiation/challenge is complete (a token is returned or a Fault occurs). In the case where token information is returned in the final leg, it is returned in the form of a <wst:RequestSecurityTokenResponseCollection>.

The negotiation/challenge information is passed in binding/profile-specific elements that are placed inside of the <wst:RequestSecurityToken> and <wst:RequestSecurityTokenResponse> elements.

It is RECOMMENDED that at least the <wsu:Timestamp> element be included in messages (as per [WS-Security]) as a way to ensure freshness of the messages in the exchange. Other types of challenges MAY also be included. For example, a <wsp:Policy> element may be used to negotiate desired policy behaviors of both parties. Multiple challenges and responses MAY be included.

1540

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

1551
1552
1553

1554

1555
1556
1557

1558
8.2 [bookmark: _bookmark57]
Signature Challenges

Exchange requests are issued by including an element that describes the exchange (e.g. challenge) and responses contain an element describing the response. For example, signature challenges are processed using the <wst:SignChallenge> element. The response is returned in a
<wst:SignChallengeResponse> element. Both the challenge and the response elements are
specified within the <wst:RequestSecurityTokenResponse> element. Some forms of negotiation MAY specify challenges along with responses to challenges from the other party. It should be noted that the requestor MAY provide exchange information (e.g. a challenge) to the recipient in the initial request. Consequently, these elements are also allowed within a <wst:RequestSecurityToken> element.

The syntax of these elements is as follows:

<wst:SignChallenge xmlns:wst="...”>
<wst:Challenge ...>...</wst:Challenge>
</wst:SignChallenge>

<wst:SignChallengeResponse xmlns:wst="...”>
<wst:Challenge ...>...</wst:Challenge>
</wst:SignChallengeResponse>

1559
1560
1561
1562

1563
1564
1565
1566
1567
1568
1569
1570
1571

1572
1573

1574
1575
1576

1577
1578
1579

1580
1581
1582
1583
1584

1585
1586

1587
1588
1589

1590

1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603

The following describes the attributes and tags listed in the schema above:
.../wst:SignChallenge
This OPTIONAL element describes a challenge that requires the other party to sign a specified set of information.

.../wst:SignChallenge/wst:Challenge
This REQUIRED string element describes the value to be signed. In order to prevent certain types of attacks (such as man-in-the-middle), it is strongly RECOMMENDED that the challenge be bound to the negotiation. For example, the challenge SHOULD track (such as using a digest of) any relevant data exchanged such as policies, tokens, replay protection, etc. As well, if the challenge is happening over a secured channel, a reference to the channel SHOULD also be included. Furthermore, the recipient of a challenge SHOULD verify that the data tracked (digested) matches their view of the data exchanged. The exact algorithm MAY be defined in profiles or agreed to by the parties.

.../SignChallenge/{any}
This is an extensibility mechanism to allow additional negotiation types to be used.

.../wst:SignChallenge/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be added to the element.

.../wst:SignChallengeResponse
This OPTIONAL element describes a response to a challenge that requires the signing of a specified set of information.

.../wst:SignChallengeResponse/wst:Challenge
If a challenge was issued, the response MUST contain the challenge element exactly as received. As well, while the RSTR response SHOULD always be signed, if a challenge was issued, the RSTR MUST be signed (and the signature coupled with the message to prevent replay).

.../wst:SignChallengeResponse/{any}
This is an extensibility mechanism to allow additional negotiation types to be used.

.../wst:SignChallengeResponse/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be added to the element.

8.3 [bookmark: _bookmark58]User Interaction Challenge

User interaction challenge requests are issued by including the <InteractiveChallenge> element. The response is returned in a <InteractiveChallengeResponse> element. Both the challenge and response elements are specified within the <wst:RequestSecurityTokenResponse> element. In some instances, the requestor may issue a challenge to the recipient or provide a response to an anticipated challenge from the recipient in the initial request. Consequently, these elements are also allowed within a
<wst:RequestSecurityToken> element. The challenge/response exchange between client and server MAY be iterated over multiple legs before a final response is issued.
Implementations SHOULD take into account the possibility that messages in either direction may be lost or duplicated. In the absence of a lower level protocol guaranteeing delivery of every message in order and exactly once, which retains the ordering of requests and responses traveling in opposite directions, implementations SHOULD observe the following procedures:
The STS SHOULD:
1. Never send a new request while an existing request is pending,

1604
1605
1606
1607
1608
1609
1610
1611
1612
2.
Timeout requests and retransmit them.
3. Silently discard responses when no request is pending.

The service consumer MAY:
1. Respond to a repeated request with the same information
2. Retain user input until the Challenge Interation is complete in case it is necessary to repeat the response.
Note that the xml:lang attribute may be used where allowed via attribute extensibility to specify a language of localized elements and attributes using the language codes specified in [RFC 3066].

1613

1614

1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

1630
1631

1632
1633

1634
1635
1636
1637

1638
1639

1640
1641
1642

1643
1644
1645
1646

1647
1648
1649
8.3.1 [bookmark: _bookmark59]
Challenge Format

The syntax of the user interaction challenge element is as follows:

<wst14:InteractiveChallenge xmlns:wst14="..." ...>
<wst14:Title ...> xs:string </wst14:Title> ?
<wst14:TextChallenge RefId="xs:anyURI" Label="xs:string"?
MaxLen="xs:int"? HideText="xs:boolean"? ...>
<wst14:Image MimeType="xs:string"> xs:base64Binary </wst14:Image> ?
</wst14:TextChallenge> *
<wst14:ChoiceChallenge RefId="xs:anyURI" Label="xs:string"?
ExactlyOne="xs:boolean"? ...>
<wst14:Choice RefId="xs:anyURI" Label="xs:string"? ...>
<wst14:Image MimeType="xs:string"> xs:base64Binary </wst14:Image> ?
</wst14:Choice> +
</wst14:ChoiceChallenge> *
< wst14:ContextData RefId="xs:anyURI"> xs:any </wst14:ContextData> *
...
</wst14:InteractiveChallenge>

The following describes the attributes and elements listed in the schema outlined above:

.../wst14:InteractiveChallenge
A container element for a challenge that requires interactive user input.

.../wst14:InteractiveChallenge/wst14:Title
An OPTIONAL element that specifies an overall title text to be displayed to the user (e.g. a title describing the purpose or nature of the challenge). How the preferred language of the requestor is communicated to the STS is left up to implementations.

.../wst14:InteractiveChallenge/wst14:TextChallenge
An OPTIONAL element that specifies a challenge that requires textual input from the user.

.../wst14:InteractiveChallenge/wst14:TextChallenge/@RefId
A REQUIRED attribute that specifies a reference identifier for this challenge element which is used to correlate the corresponding element in the response to the challenge.

.../wst14:InteractiveChallenge/wst14:TextChallenge/@MaxLen
An OPTIONAL attribute that specifies the maximum length of the text string that is sent as the response to this text challenge. This value serves as a hint for the user interface software at the requestor which manifests the end-user experience for this challenge.

.../wst14:InteractiveChallenge/wst14:TextChallenge/@HideText
An OPTIONAL attribute that specifies that the response to this text challenge MUST receive treatment as hidden text in any user interface. For example, the text entry may be displayed as a

1650
1651

1652
1653
1654
1655

1656
1657
1658
1659
1660
1661
1662

1663
1664
1665

1666
1667
1668

1669
1670
1671

1672
1673
1674
1675

1676
1677
1678
1679

1680
1681

1682
1683
1684

1685
1686
1687
1688

1689
1690
1691
1692
1693
1694

series of asterisks in the user interface. This attribute serves as a hint for the user interface software at the requestor which manifests the end-user experience for this challenge.

.../wst14:InteractiveChallenge/wst14:TextChallenge/@Label
An OPTIONAL attribute that specifies a label for the text challenge item (e.g. a label for a text entry field) which will be shown to the user. How the preferred language of the requestor is communicated to the STS is left up to implementations.

.../wst14:InteractiveChallenge/wst14:TextChallenge/Image
An OPTIONAL element that contains a base64 encoded inline image specific to the text challenge item to be shown to the user (e.g. an image that the user must see to respond successfully to the challenge). The image presented is intended as an additional label to a challenge element which could be CAPTCHA, selection of a previously established image secret or any other means by which images can be used to challenge a user to interact in a way to satisfy a challenge.

.../wst14:InteractiveChallenge/wst14:TextChallenge/Image/@MimeType
A REQUIRED attribute that specifies a MIME type (e.g., image/gif, image/jpg) indicating the format of the image.

.../wst14:InteractiveChallenge/wst14:ChoiceChallenge
An OPTIONAL element that specifies a challenge that requires a choice among multiple items by the user.

.../wst14:InteractiveChallenge/wst14:ChoiceChallenge/@RefId
A REQUIRED attribute that specifies a reference identifier for this challenge element which is used to correlate the corresponding element in the response to the challenge.

.../wst14:InteractiveChallenge/wst14:ChoiceChallenge/@Label
An OPTIONAL attribute that specifies a title label for the choice challenge item (e.g., a text header describing the list of choices as a whole) which will be shown to the user. How the preferred language of the requestor is communicated to the STS is left up to implementations.

.../wst14:InteractiveChallenge/wst14:ChoiceChallenge/@ExactlyOne
An OPTIONAL attribute that specifies if exactly once choice must be selected by the user from among the child element choices. The absence of this attribute implies the value “false” which means multiple choices can be selected.

.../wst14:InteractiveChallenge/wst14:ChoiceChallenge/wst14:Choice
A REQUIRED element that specifies a single choice item within the choice challenge.

.../wst14:InteractiveChallenge/wst14:ChoiceChallenge/wst14:Choice/@RefId
A REQUIRED attribute that specifies a reference identifier for this specific choice item which is used to correlate the corresponding element in the response to the challenge.

.../wst14:InteractiveChallenge/wst14:ChoiceChallenge/wst14:Choice/@Label
An OPTIONAL attribute that specifies a text label for the choice item (e.g., text describing the individual choice) which will be shown to the user. How the preferred language of the requestor is communicated to the STS is left up to implementations.

.../wst14:InteractiveChallenge/wst14:ChoiceChallenge/wst14:Choice/wst14:Image
An OPTIONAL element that contains a base64 encoded inline image specific to the choice item to be shown to the user (e.g. an image that the user must see to respond successfully to the challenge). The image presented is intended as an additional label to a challenge element which could be CAPTCHA, selection of a previously established image secret or any other means by which images can be used to challenge a user to interact in a way to satisfy a challenge.

1695
1696
1697

1698
1699
1700
1701
1702
1703

1704
1705
1706

1707
1708

1709
1710

1711
1712

1713
1714
1715
1716
1717
1718
1719
1720
1721
1722

1723
1724

1725
1726

1727
1728

1729
1730
1731

1732
1733

1734
1735
1736

1737
1738

1739

.../wst14:InteractiveChallenge/wst14:ChoiceChallenge/wst14:Choice/wst14:Image/@MimeType
A REQUIRED attribute that specifies a MIME type (e.g., image/gif, image/jpg) indicating the format of the image.

.../wst14:InteractiveChallenge/wst14:ContextData
An OPTIONAL element that specifies a value that MUST be reflected back in the response to the challenge (e.g., cookie). The element may contain any value. The actual content is opaque to the requestor; it is not required to understand its structure or semantics. This can be used by an STS, for instance, to store information between the challenge/response exchanges that would otherwise be lost if the STS were to remain stateless.

.../wst14:InteractiveChallenge/wst14:ContextData/@RefId
A REQUIRED attribute that specifies a reference identifier for this context element which is used to correlate the corresponding element in the response to the challenge.

.../wst14:InteractiveChallenge/{any}
This is an extensibility mechanism to allow additional elements to be specified.

.../wst14:InteractiveChallenge/@{any}
This is an extensibility mechanism to allow additional attributes to be specified.

The syntax of the user interaction challenge response element is as follows:

<wst14:InteractiveChallengeResponse xmlns:wst14="..." ...>
<wst14:TextChallengeResponse RefId="xs:anyURI" ...>
xs:string
</wst14:TextChallengeResponse> *
<wst14:ChoiceChallengeResponse RefId="xs:anyURI"> *
<wst14:ChoiceSelected RefId="xs:anyURI" /> *
</wst14:ChoiceChallengeResponse>
<wst14:ContextData RefId="xs:anyURI"> xs:any </wst14:ContextData> *
...
</wst14:InteractiveChallengeResponse>

The following describes the attributes and elements listed in the schema outlined above:

.../wst14:InteractiveChallengeResponse
A container element for the response to a challenge that requires interactive user input.

.../wst14:InteractiveChallengeResponse/wst14:TextChallengeResponse
This element value contains the user input as the response to the original text challenge issued.

.../wst14:InteractiveChallengeResponse/wst14:TextChallengeResponse/@RefId
A required attribute that specifies the identifier for the text challenge element in the original challenge which can be used for correlation.

.../wst14:InteractiveChallengeResponse/wst14:ChoiceChallengeResponse
A container element for the response to a choice challenge.

.../wst14:InteractiveChallengeResponse/wst14:ChoiceChallengeResponse/@RefId
A required attribute that specifies the reference identifier for the choice challenge element in the original challenge which can be used for correlation.

.../wst14:InteractiveChallengeResponse/wst14:ChoiceChallengeResponse/wst14:ChoiceSelected
A required element that specifies a choice item selected by the user from the choice challenge.

.../wst14:InteractiveChallengeResponse/wst14:ChoiceChallengeResponse/wst14:ChoiceSelected/@RefId

1740
1741

1742
1743
1744

1745
1746
1747

1748
1749

1750
1751

1752
1753
1754
1755
1756
1757
1758
1759
1760
1761

A required attribute that specifies the reference identifier for the choice item in the original choice challenge which can be used for correlation.

.../wst14:InteractiveChallengeResponse/wst14:ContextData
An optional element that carries a context data item from the original challenge that is simply reflected back.

.../wst14:InteractiveChallengeResponse/wst14:ContextData/@RefId
A required attribute that specifies the reference identifier for the context data element in the original challenge which can be used for correlation.

.../wst14:InteractiveChallengeResponse/{any}
This is an extensibility mechanism to allow additional elements to be specified.

.../wst14:InteractiveChallengeResponse/@{any}
This is an extensibility mechanism to allow additional attributes to be specified.

In order to prevent certain types of attacks, such as man-in-the-middle or replay of response, the challenge SHOULD be bound to the response. For example, an STS may use the <ContextData> element in the challenge to include a digest of any relevant replay protection data and verify that the same data is reflected back by the requestor.
Text provided by the STS which is intended for display SHOULD NOT contain script, markup or other unprintable characters. Image data provided by the STS SHOULD NOT contain imbedded commands or other content except an image to be displayed.
Service consumers MUST ignore any script, markup or other unprintable characters when displaying text sent by the STS. Service consumers MUST insure that image data does not contain imbedded commands or other content before displaying the image.

1762

1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778

1779
1780

1781
1782
1783
1784
1785
8.3.2 [bookmark: _bookmark60]
PIN and OTP Challenges

In some situations, some additional authentication step may be required, but the Consumer cannot determine this in advance of making the request. Two common cases that require user interaction are:
· a challenge for a secret PIN,
· a challenge for a one-time-password (OTP).

This challenge may be issued by an STS using the “text challenge” format within a user interaction challenge specified in the section above. A requestor responds to the challenge with the PIN/OTP value along with the corresponding @RefId attribute value for the text challenge which is used by the STS to correlate the response to the original challenge. This pattern of exchange requires that the requestor must receive the challenge first and thus learn the @RefId attribute value to include in the response.

There are cases where a requestor may know a priori that the STS challenges for a single PIN/OTP and, as an optimization, provide the response to the anticipated challenge in the initial request. The following distinguished URIs are defined for use as the value of the @RefId attribute of a
<TextChallengeResponse> element to represent PIN and OTP responses using the optimization pattern.

http://docs.oasis-open.org/ws-sx/ws-trust/200802/challenge/PIN
http://docs.oasis-open.org/ws-sx/ws-trust/200802/challenge/OTP

An STS may choose not to support the optimization pattern above for PIN/OTP response. In some cases, an OTP challenge from the STS may include a dynamic random value that the requestor must feed into the OTP generating module before an OTP response is computed. In such cases, the optimized response pattern may not be usable.

1786

1787
1788
1789
1790
1791

1792
1793

1794
1795
1796
1797
1798
1799
1800

1801
1802
1803

1804
1805
1806

1807
1808
1809

1810
1811
1812
1813
1814
1815
8.4 [bookmark: _bookmark61]
Binary Exchanges and Negotiations

Exchange requests MAY also utilize existing binary formats passed within the WS-Trust framework. A generic mechanism is provided for this that includes a URI attribute to indicate the type of binary exchange.

The syntax of this element is as follows:

<wst:BinaryExchange ValueType="..." EncodingType="..." xmlns:wst="...”>
</wst:BinaryExchange>

The following describes the attributes and tags listed in the schema above (note that the ellipses below indicate that this element MAY be placed in different containers. For this specification, these are limited to <wst:RequestSecurityToken> and <wst:RequestSecurityTokenResponse>):
.../wst:BinaryExchange
This OPTIONAL element is used for a security negotiation that involves exchanging binary blobs as part of an existing negotiation protocol. The contents of this element are blob-type-specific and are encoded using base64 (unless otherwise specified).

.../wst:BinaryExchange/@ValueType
This REQUIRED attribute specifies a URI to identify the type of negotiation (and the value space of the blob – the element's contents).

.../wst:BinaryExchange/@EncodingType
This REQUIRED attribute specifies a URI to identify the encoding format (if different from base64) of the negotiation blob. Refer to [WS-Security] for sample encoding format URIs.

.../wst:BinaryExchange/@{any}
This is an extensibility mechanism to allow additional attributes, based on schemas, to be added to the element.

Some binary exchanges result in a shared state/context between the involved parties. It is RECOMMENDED that at the conclusion of the exchange, a new token and proof-of-possession token be returned. A common approach is to use the negotiated key as a "secure channel" mechanism to secure the new token and proof-of-possession token.
For example, an exchange might establish a shared secret Sx that can then be used to sign the final response and encrypt the proof-of-possession token.

1816

1817
1818
1819
1820
1821
1822
1823
1824
1825

1826

1827
8.5 [bookmark: _bookmark62]
Key Exchange Tokens

In some cases it MAY be necessary to provide a key exchange token so that the other party (either requestor or issuer) can provide entropy or key material as part of the exchange. Challenges MAY NOT always provide a usable key as the signature may use a signing-only certificate.

The section describes two OPTIONAL elements that can be included in RST and RSTR elements to indicate that a Key Exchange Token (KET) is desired, or to provide a KET.
The syntax of these elements is as follows (Note that the ellipses below indicate that this element MAY be placed in different containers. For this specification, these are limited to
<wst:RequestSecurityToken> and <wst:RequestSecurityTokenResponse>):

<wst:RequestKET xmlns:wst="..." />

1828

1829
1830
1831
1832
1833

1834
1835
1836

1837

1838
1839
1840
1841
1842
1843
1844

<wst:KeyExchangeToken xmlns:wst="...”>...</wst:KeyExchangeToken>

The following describes the attributes and tags listed in the schema above:
.../wst:RequestKET
This OPTIONAL element is used to indicate that the receiving party (either the original requestor or issuer) SHOULD provide a KET to the other party on the next leg of the exchange.

.../wst:KeyExchangeToken
This OPTIONAL element is used to provide a key exchange token. The contents of this element either contain the security token to be used for key exchange or a reference to it.

8.6 [bookmark: _bookmark63]Custom Exchanges

Using the extensibility model described in this specification, any custom XML-based exchange can be defined in a separate binding/profile document. In such cases elements are defined which are carried in the RST and RSTR elements.

It should be noted that it is NOT REQUIRED that exchange elements be symmetric. That is, a specific exchange mechanism MAY use multiple elements at different times, depending on the state of the exchange.

1845

1846
1847
1848
1849
1850
1851
1852

1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
8.7 [bookmark: _bookmark64]
Signature Challenge Example

Here is an example exchange involving a signature challenge. In this example, a service requests a custom token using a X.509 certificate for authentication. The issuer uses the exchange mechanism to challenge the requestor to sign a random value (to ensure message freshness). The requestor provides a signature of the requested data and, once validated, the issuer then issues the requested token.

The first message illustrates the initial request that is signed with the private key associated with the requestor's X.509 certificate:

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." xmlns:wst="...">
<S11:Header>
...
<wsse:Security>
<wsse:BinarySecurityToken
wsu:Id="reqToken" ValueType="...X509v3">
MIIEZzCCA9CgAwIBAgIQEmtJZc0...
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="...">
...
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#reqToken"/>
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityToken>
<wst:TokenType>

1877
1878
1879
1880
1881
1882
1883
1884

1885
1886
1887
1888
1889

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913

1914
1915
1916
1917

1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935

http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
</wst:RequestSecurityToken>
</S11:Body>
</S11:Envelope>

The issuer (recipient) service doesn't trust the sender's timestamp (or one wasn't specified) and issues a challenge using the exchange framework defined in this specification. This message is signed using the private key associated with the issuer's X.509 certificate and contains a random challenge that the requestor must sign:

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." xmlns:wst="...">
<S11:Header>
...
<wsse:Security>
<wsse:BinarySecurityToken
wsu:Id="issuerToken" ValueType="...X509v3">
DFJHuedsujfnrnv45JZc0...
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="...">
...
</ds:Signature>
</wsse:Security>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse>
<wst:SignChallenge>
<wst:Challenge>Huehf...</wst:Challenge>
</wst:SignChallenge>
</wst:RequestSecurityTokenResponse>
</S11:Body>
</S11:Envelope>

The requestor receives the issuer's challenge and issues a response that is signed using the requestor's
X.509 certificate and contains the challenge. The signature only covers the non-mutable elements of the message to prevent certain types of security attacks:

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." xmlns:wst="...">
<S11:Header>
...
<wsse:Security>
<wsse:BinarySecurityToken
wsu:Id="reqToken" ValueType="...X509v3">
MIIEZzCCA9CgAwIBAgIQEmtJZc0...
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="...">
...
</ds:Signature>
</wsse:Security>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse>

1936
1937
1938
1939
1940
1941

1942
1943
1944
1945

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978

<wst:SignChallengeResponse>
<wst:Challenge>Huehf...</wst:Challenge>
</wst:SignChallengeResponse>
</wst:RequestSecurityTokenResponse>
</S11:Body>
</S11:Envelope>

The issuer validates the requestor's signature responding to the challenge and issues the requested token(s) and the associated proof-of-possession token. The proof-of-possession token is encrypted for the requestor using the requestor's public key.

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." xmlns:wst="..." xmlns:xenc="...">
<S11:Header>
...
<wsse:Security>
<wsse:BinarySecurityToken
wsu:Id="issuerToken" ValueType="...X509v3">
DFJHuedsujfnrnv45JZc0...
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="...">
...
</ds:Signature>
</wsse:Security>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponseCollection>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey Id="newProof">
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>
</S11:Body>
</S11:Envelope>

1979
8.8 [bookmark: _bookmark65]
Challenge Examples

1980

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
8.8.1 [bookmark: _bookmark66]
Text and choice challenge

Here is an example of a user interaction challenge using both text and choice challenges. In this example, a user requests a custom token using a username/password for authentication. The STS uses the challenge mechanism to challenge the user for additional information in the form of a secret question (i.e., Mother’s maiden name) and an age group choice. The challenge additionally includes one contextual data item that needs to be reflected back in the response. The user interactively provides the requested data and, once validated, the STS issues the requested token. All messages are sent over a protected transport using SSLv3.

The requestor sends the initial request that includes the username/password for authentication as follows.

1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008

2009
2010
2011
2012

2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038

2039
2040
2041
2042

2043
2044
2045
2046
2047
2048
2049

<S11:Envelope ...>
<S11:Header>
...
<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>Zoe</wsse:Username>
<wsse:Password Type="http://...#PasswordText">ILoveDogs</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</S11:Header>
<S11:Body>
<wst:RequestSecurityToken>
<wst:TokenType>http://example.org/customToken</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
</wst:RequestSecurityToken>
</S11:Body>
</S11:Envelope>

The STS issues a challenge for additional information using the user interaction challenge mechanism as follows.

<S11:Envelope ...>
<S11:Header>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse>
<wst14:InteractiveChallenge xmlns:wst14="..." >
<wst14:Title>
Please answer the following additional questions to login.
</wst14:Title>
<wst14:TextChallenge RefId=http://.../ref#text1 Label="Mother’s Maiden Name" MaxLen=80 />
<wst14:ChoiceChallenge RefId="http://.../ref#choiceGroupA" Label="Your Age Group:" ExactlyOne="true">
<wst14:Choice RefId="http://.../ref#choice1" Label="18-30" />
<wst14:Choice RefId="http://.../ref#choice2" Label="31-40" />
<wst14:Choice RefId="http://.../ref#choice3" Label="41-50" />
<wst14:Choice RefId="http://.../ref#choice4" Label="50+" />
</wst14:ChoiceChallenge>
<wst14:ContextData RefId="http://.../ref#cookie1">
...
</wst14:ContextData>
</wst14:InteractiveChallenge>
</wst:RequestSecurityTokenResponse>
</S11:Body>
</S11:Envelope>

The requestor receives the challenge, provides the necessary user experience for soliciting the required inputs, and sends a response to the challenge back to the STS as follows.

<S11:Envelope ...>
<S11:Header>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse>
<wst14:InteractiveChallengeResponse xmlns:wst14="..." >

2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062

2063
2064
2065
2066

2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085

2086

<wst14:TextChallengeResponse RefId="http://.../ref#text1"> Goldstein
</wst14:TextChallengeResponse>
<wst14:ChoiceChallengeResponse RefId="http://.../ref#choiceGroupA">
<wst14:ChoiceSelected RefId="http://.../ref#choice3" />
</wst14:ChoiceChallengeResponse>
<wst14:ContextData RefId="http://.../ref#cookie1">
...
</wst14:ContextData>
</wst14:InteractiveChallengeResponse>
</wst:RequestSecurityTokenResponse>
</S11:Body>
</S11:Envelope>

The STS validates the response containing the inputs from the user, and issues the requested token as follows.

<S11:Envelope ...>
<S11:Header>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponseCollection>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
...
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>
</S11:Body>
</S11:Envelope>

2087

2088
2089
2090
2091
2092
2093
2094
2095

2096
2097
2098
2099
2100
2101
2102
2103
2104
8.8.2 [bookmark: _bookmark67]
PIN challenge

Here is an example of a user interaction challenge using a text challenge for a secret PIN. In this example, a user requests a custom token using a username/password for authentication. The STS uses the text challenge mechanism for an additional PIN. The user interactively provides the PIN and, once validated, the STS issues the requested token. All messages are sent over a protected transport using SSLv3.

The requestor sends the initial request that includes the username/password for authentication as follows.

<S11:Envelope ...>
<S11:Header>
...
<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>Zoe</wsse:Username>
<wsse:Password Type="http://...#PasswordText"> ILoveDogs
</wsse:Password>

2105
2106
2107
2108
2109
2110
2111
2112
2113
2114

2115
2116
2117

2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132

2133
2134
2135
2136

2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151

2152
2153
2154

2155
2156
2157
2158
2159
2160

</wsse:UsernameToken>
</wsse:Security>
</S11:Header>
<S11:Body>
<wst:RequestSecurityToken>
<wst:TokenType>http://example.org/customToken</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
</wst:RequestSecurityToken>
</S11:Body>
</S11:Envelope>

The STS issues a challenge for a secret PIN using the text challenge mechanism as follows.

<S11:Envelope ...>
<S11:Header>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse>
<wst14:InteractiveChallenge xmlns:wst14="..." >
<wst14:TextChallenge
RefId="http://docs.oasis-open.org/ws-sx/ws-trust/200802/challenge/PIN" Label="Please enter your PIN" />
</wst14:TextChallenge>
</wst14:InteractiveChallenge>
</wst:RequestSecurityTokenResponse>
</S11:Body>
</S11:Envelope>

The requestor receives the challenge, provides the necessary user experience for soliciting the PIN, and sends a response to the challenge back to the STS as follows.

<S11:Envelope ...>
<S11:Header>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponse>
<wst14:InteractiveChallengeResponse xmlns:wst14="..." >
<wst14:TextChallengeResponse
RefId="http://docs.oasis-open.org/ws-sx/ws-trust/200802/challenge/PIN"> 9988
</wst14:TextChallengeResponse>
</wst14:InteractiveChallengeResponse>
</wst:RequestSecurityTokenResponse>
</S11:Body>
</S11:Envelope>

The STS validates the PIN response, and issues the requested token as follows.

<S11:Envelope ...>
<S11:Header>
...
</S11:Header>
<S11:Body>
<wst:RequestSecurityTokenResponseCollection>

2161
[bookmark: _GoBack]2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173

2174

<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
...
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>
</S11:Body>
</S11:Envelope>

2175

2176
2177
2178
2179
2180
2181
2182

2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207

2208
2209
2210
2211

2212
2213
2214
2215
8.8.3 [bookmark: _bookmark68]
PIN challenge with optimized response

The following example illustrates using the optimized PIN response pattern for the same exact challenge as in the previous section. This reduces the number of message exchanges to two instead of four. All messages are sent over a protected transport using SSLv3.

The requestor sends the initial request that includes the username/password for authentication as well as the response to the anticipated PIN challenge as follows.

<S11:Envelope ...>
<S11:Header>
...
<wsse:Security>
<wsse:UsernameToken>
<wsse:Username>Zoe</wsse:Username>
<wsse:Password Type="http://...#PasswordText"> ILoveDogs
</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</S11:Header>
<S11:Body>
<wst:RequestSecurityToken>
<wst:TokenType>http://example.org/customToken</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
<wst14:InteractiveChallengeResponse xmlns:wst14="..." >
<wst14:TextChallengeResponse
RefId="http://docs.oasis-open.org/ws-sx/ws-trust/200802/challenge/PIN"> 9988
</wst14:TextChallengeResponse>
</wst14:InteractiveChallengeResponse>
</wst:RequestSecurityToken>
</S11:Body>
</S11:Envelope>

The STS validates the authentication credential as well as the optimized PIN response, and issues the requested token as follows.

<S11:Envelope ...>
<S11:Header>
...
</S11:Header>

2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230

2231

2232

2233
2234
2235
2236

2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247

2248
2249
2250

2251
2252
2253
2254
2255

2256
2257
2258
2259

2260
2261
2262
2263
2264

2265

<S11:Body>
<wst:RequestSecurityTokenResponseCollection>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
...
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>
</S11:Body>
</S11:Envelope>

8.9 [bookmark: _bookmark69]Custom Exchange Example

Here is another illustrating the syntax for a token request using a custom XML exchange. For brevity, only the RST and RSTR elements are illustrated. Note that the framework allows for an arbitrary number of exchanges, although this example illustrates the use of four legs. The request uses a custom exchange element and the requestor signs only the non-mutable element of the message:

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType> http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<xyz:CustomExchange xmlns:xyz="...">
...
</xyz:CustomExchange>
</wst:RequestSecurityToken>

The issuer service (recipient) responds with another leg of the custom exchange and signs the response (non-mutable aspects) with its token:

<wst:RequestSecurityTokenResponse xmlns:wst="...”>
<xyz:CustomExchange xmlns:xyz="...">
...
</xyz:CustomExchange>
</wst:RequestSecurityTokenResponse>

The requestor receives the issuer's exchange and issues a response that is signed using the requestor's token and continues the custom exchange. The signature covers all non-mutable aspects of the message to prevent certain types of security attacks:

<wst:RequestSecurityTokenResponse xmlns:wst="...”>
<xyz:CustomExchange xmlns:xyz="...">
...
</xyz:CustomExchange>
</wst:RequestSecurityTokenResponse>

2266
2267
2268

2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285

2286
2287

The issuer processes the exchange and determines that the exchange is complete and that a token should be issued. Consequently it issues the requested token(s) and the associated proof-of-possession token. The proof-of-possession token is encrypted for the requestor using the requestor's public key.

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey Id="newProof" xmlns:xenc="...">
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey xmlns:xenc="...">...</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

It should be noted that other example exchanges include the issuer returning a final custom exchange element, and another example where a token isn't returned.

2288

2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
8.10 [bookmark: _bookmark70]
Protecting Exchanges

There are some attacks, such as forms of man-in-the-middle, that can be applied to token requests involving exchanges. It is RECOMMENDED that the exchange sequence be protected. This MAY be built into the exchange messages, but if metadata is provided in the RST or RSTR elements, then it is subject to attack.

Consequently, it is RECOMMENDED that keys derived from exchanges be linked cryptographically to the exchange. For example, a hash can be computed by computing the SHA1 of the exclusive canonicalization [XML-C14N] of all RST and RSTR elements in messages exchanged. This value can then be combined with the exchanged secret(s) to create a new master secret that is bound to the data both parties sent/received.

To this end, the following computed key algorithm is defined to be OPTIONALLY used in these scenarios:

	URI
	Meaning

	http://docs.oasis-open.org/ws-sx/ws- trust/200512/CK/HASH
	The key is computed using P_SHA1 as follows:
H=SHA1(ExclC14N(RST...RSTRs))
X=encrypting H using negotiated key and mechanism
Key=P_SHA1(X,H+"CK-HASH")
The octets for the "CK-HASH" string are the UTF-8 octets.

2301

2302
2303
8.11 [bookmark: _bookmark71]
Authenticating Exchanges

After an exchange both parties have a shared knowledge of a key (or keys) that can then be used to secure messages. However, in some cases it may be desired to have the issuer prove to the requestor

2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319

2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330

2331
2332
2333
2334
2335

2336
2337
2338
2339
2340
2341

2342
2343
2344

that it knows the key (and that the returned metadata is valid) prior to the requestor using the data. However, until the exchange is actually completed it MAY be (and is often) inappropriate to use the computed keys. As well, using a token that hasn't been returned to secure a message may complicate processing since it crosses the boundary of the exchange and the underlying message security. This means that it MAY NOT be appropriate to sign the final leg of the exchange using the key derived from the exchange.

For this reason an authenticator is defined that provides a way for the issuer to verify the hash as part of the token issuance. Specifically, when an authenticator is returned, the
<wst:RequestSecurityTokenResponseCollection> element is returned. This contains one
RSTR with the token being returned as a result of the exchange and a second RSTR that contains the authenticator (this order SHOULD be used). When an authenticator is used, RSTRs MUST use the
@Context element so that the authenticator can be correlated to the token issuance. The authenticator is
separated from the RSTR because otherwise computation of the RST/RSTR hash becomes more complex. The authenticator is represented using the <wst:Authenticator> element as illustrated below:

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse Context="...">
...
</wst:RequestSecurityTokenResponse>
<wst:RequestSecurityTokenResponse Context="...">
<wst:Authenticator>
<wst:CombinedHash>...</wst:CombinedHash>
...
</wst:Authenticator>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

The following describes the attributes and elements listed in the schema overview above (the ... notation below represents the path RSTRC/RSTR and is used for brevity):
.../wst:Authenticator
This OPTIONAL element provides verification (authentication) of a computed hash.

.../wst:Authenticator/wst:CombinedHash
This OPTIONAL element proves the hash and knowledge of the computed key. This is done by providing the base64 encoding of the first 256 bits of the P_SHA1 digest of the computed key and the concatenation of the hash determined for the computed key and the string "AUTH-HASH". Specifically, P_SHA1(computed-key, H + "AUTH-HASH")0-255. The octets for the "AUTH-HASH" string are the UTF-8 octets.

This <wst:CombinedHash> element is OPTIONAL (and an open content model is used) to allow for different authenticators in the future.

2345

2346
2347
2348
9 [bookmark: _bookmark72]
Key and Token Parameter Extensions

This section outlines additional parameters that can be specified in token requests and responses. Typically they are used with issuance requests, but since all types of requests MAY issue security tokens they could apply to other bindings.

2349

2350
2351
2352

2353
2354
2355
2356
2357
2358
2359

2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370

2371
2372
2373

2374
2375
2376

2377
2378
2379
2380
2381
2382
9.1 [bookmark: _bookmark73]
On-Behalf-Of Parameters

In some scenarios the requestor is obtaining a token on behalf of another party. These parameters specify the issuer and original requestor of the token being used as the basis of the request. The syntax is as follows (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
<wst:OnBehalfOf>...</wst:OnBehalfOf>
<wst:Issuer>...</wst:Issuer>
</wst:RequestSecurityToken>

The following describes the attributes and elements listed in the schema overview above:
/wst:RequestSecurityToken/wst:OnBehalfOf
This OPTIONAL element indicates that the requestor is making the request on behalf of another. The identity on whose behalf the request is being made is specified by placing a security token,
<wsse:SecurityTokenReference> element, or <wsa:EndpointReference> element within the <wst:OnBehalfOf> element. The requestor MAY provide proof of possession of the key associated with the OnBehalfOf identity by including a signature in the RST security header generated using the OnBehalfOf token that signs the primary signature of the RST (i.e. endorsing supporting token concept from WS-SecurityPolicy). Additional signed supporting tokens describing the OnBehalfOf context MAY also be included within the RST security header.

/wst:RequestSecurityToken/wst:Issuer
This OPTIONAL element specifies the issuer of the security token that is presented in the message. This element's type is an endpoint reference as defined in [WS-Addressing].

In the following illustrates the syntax for a proxy that is requesting a security token on behalf of another requestor or end-user.

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
<wst:OnBehalfOf>endpoint-reference</wst:OnBehalfOf>
</wst:RequestSecurityToken>

2383

2384
2385
2386
2387
9.2 [bookmark: _bookmark74]
Key and Encryption Requirements

This section defines extensions to the <wst:RequestSecurityToken> element for requesting specific types of keys or algorithms or key and algorithms as specified by a given policy in the return token(s). In some cases the service may support a variety of key types, sizes, and algorithms. These parameters allow a requestor to indicate its desired values. It should be noted that the issuer's policy indicates if input

2388
2389
2390
2391
2392
2393
2394

2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412

2413
2414
2415
2416
2417
2418
2419
2420

2421
2422
2423
2424
2425

values must be adhered to and faults generated for invalid inputs, or if the issuer will provide alterative values in the response.

Although illustrated using the <wst:RequestSecurityToken> element, these options can also be returned in a <wst:RequestSecurityTokenResponse> element.
The syntax for these OPTIONAL elements is as follows (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
<wst:AuthenticationType>...</wst:AuthenticationType>
<wst:KeyType>...</wst:KeyType>
<wst:KeySize>...</wst:KeySize>
<wst:SignatureAlgorithm>...</wst:SignatureAlgorithm>
<wst:EncryptionAlgorithm>...</wst:EncryptionAlgorithm>
<wst:CanonicalizationAlgorithm>...</wst:CanonicalizationAlgorithm>
<wst:ComputedKeyAlgorithm>...</wst:ComputedKeyAlgorithm>
<wst:Encryption>...</wst:Encryption>
<wst:ProofEncryption>...</wst:ProofEncryption>
<wst:KeyWrapAlgorithm>...</wst:KeyWrapAlgorithm>
<wst:UseKey Sig="..."> </wst:UseKey>
<wst:SignWith>...</wst:SignWith>
<wst:EncryptWith>...</wst:EncryptWith>
</wst:RequestSecurityToken>

The following describes the attributes and elements listed in the schema overview above:
/wst:RequestSecurityToken/wst:AuthenticationType
This OPTIONAL URI element indicates the type of authentication desired, specified as a URI. This specification does not predefine classifications; these are specific to token services as is the relative strength evaluations. The relative assessment of strength is up to the recipient to determine. That is, requestors SHOULD be familiar with the recipient policies. For example, this might be used to indicate which of the four U.S. government authentication levels is REQUIRED.

/wst:RequestSecurityToken/wst:KeyType
This OPTIONAL URI element indicates the type of key desired in the security token. The predefined values are identified in the table below. Note that some security token formats have fixed key types. It should be noted that new algorithms can be inserted by defining URIs in other specifications and profiles.

	URI
	Meaning

	http://docs.oasis-open.org/ws-sx/ws- trust/200512/PublicKey
	A public key token is requested

	http://docs.oasis-open.org/ws-sx/ws- trust/200512/SymmetricKey
	A symmetric key token is requested (default)

	http://docs.oasis-open.org/ws-sx/ws- trust/200512/Bearer
	A bearer token is requested. This key type can be used by requestors to indicate that they want a security token to be issued that does not require proof of possession.

2426

/wst:RequestSecurityToken/wst:KeySize

2427
2428
2429
2430
2431

2432
2433
2434
2435

2436
2437
2438
2439

2440
2441
2442
2443

2444
2445
2446

2447
2448
2449
2450
2451
2452

2453
2454
2455
2456
2457
2458
2459

2460
2461
2462

2463
2464
2465
2466
2467
2468
2469
2470

2471
2472
2473

This OPTIONAL integer element indicates the size of the key REQUIRED specified in number of bits. This is a request, and, as such, the requested security token is not obligated to use the requested key size. That said, the recipient SHOULD try to use a key at least as strong as the specified value if possible. The information is provided as an indication of the desired strength of the security.

/wst:RequestSecurityToken/wst:SignatureAlgorithm
This OPTIONAL URI element indicates the desired signature algorithm used within the returned token. This is specified as a URI indicating the algorithm (see [XML-Signature] for typical signing algorithms).

/wst:RequestSecurityToken/wst:EncryptionAlgorithm
This OPTIONAL URI element indicates the desired encryption algorithm used within the returned token. This is specified as a URI indicating the algorithm (see [XML-Encrypt] for typical encryption algorithms).

/wst:RequestSecurityToken/wst:CanonicalizationAlgorithm
This OPTIONAL URI element indicates the desired canonicalization method used within the returned token. This is specified as a URI indicating the method (see [XML-Signature] for typical canonicalization methods).

/wst:RequestSecurityToken/wst:ComputedKeyAlgorithm
This OPTIONAL URI element indicates the desired algorithm to use when computed keys are used for issued tokens.

/wst:RequestSecurityToken/wst:Encryption
This OPTIONAL element indicates that the requestor desires any returned secrets in issued security tokens to be encrypted for the specified token. That is, so that the owner of the specified token can decrypt the secret. Normally the security token is the contents of this element but a security token reference MAY be used instead. If this element isn't specified, the token used as the basis of the request (or specialized knowledge) is used to determine how to encrypt the key.

/wst:RequestSecurityToken/wst:ProofEncryption
This OPTIONAL element indicates that the requestor desires any returned secrets in proof-of- possession tokens to be encrypted for the specified token. That is, so that the owner of the specified token can decrypt the secret. Normally the security token is the contents of this element but a security token reference MAY be used instead. If this element isn't specified, the token used as the basis of the request (or specialized knowledge) is used to determine how to encrypt the key.

/wst:RequestSecurityToken/wst:KeyWrapAlgorithm
This OPTIONAL URI element indicates the desired algorithm to use for key wrapping when STS encrypts the issued token for the relying party using an asymmetric key.

/wst:RequestSecurityToken/wst:UseKey
If the requestor wishes to use an existing key rather than create a new one, then this OPTIONAL element can be used to reference the security token containing the desired key. This element either contains a security token or a <wsse:SecurityTokenReference> element that references the security token containing the key that SHOULD be used in the returned token. If
<wst:KeyType> is not defined and a key type is not implicitly known to the service, it MAY be determined from the token (if possible). Otherwise this parameter is meaningless and is ignored. Requestors SHOULD demonstrate authorized use of the public key provided.

/wst:RequestSecurityToken/wst:UseKey/@Sig
In order to authenticate the key referenced, a signature MAY be used to prove the referenced token/key. If specified, this OPTIONAL attribute indicates the ID of the corresponding signature

2474
2475

2476
2477
2478
2479
2480

2481
2482
2483
2484
2485

2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518

(by URI reference). When this attribute is present, a key need not be specified inside the element since the referenced signature will indicate the corresponding token (and key).

/wst:RequestSecurityToken/wst:SignWith
This OPTIONAL URI element indicates the desired signature algorithm to be used with the issued security token (typically from the policy of the target site for which the token is being requested. While any of these OPTIONAL elements MAY be included in RSTRs, this one is a likely candidate if there is some doubt (e.g., an X.509 cert that can only use DSS).

/wst:RequestSecurityToken/wst:EncryptWith
This OPTIONAL URI element indicates the desired encryption algorithm to be used with the issued security token (typically from the policy of the target site for which the token is being requested.) While any of these OPTIONAL elements MAY be included in RSTRs, this one is a likely candidate if there is some doubt.

The following summarizes the various algorithm parameters defined above. T is the issued token, P is the proof key.

SignatureAlgorithm - The signature algorithm to use to sign T EncryptionAlgorithm - The encryption algorithm to use to encrypt T CanonicalizationAlgorithm - The canonicalization algorithm to use when signing T
ComputedKeyAlgorithm - The key derivation algorithm to use if using a symmetric key for P where P is computed using client, server, or combined entropy
Encryption - The token/key to use when encrypting T
ProofEncryption - The token/key to use when encrypting P
UseKey - This is P. This is generally used when the client supplies a public-key that it wishes to be embedded in T as the proof key
SignWith - The signature algorithm the client intends to employ when using P to sign
The encryption algorithms further differ based on whether the issued token contains asymmetric key or symmetric key. Furthermore, they differ based on what type of key is used to protect the issued token from the STS to the relying party. The following cases can occur:
T contains symmetric key/STS uses symmetric key to encrypt T for RP
EncryptWith – used to indicate symmetric algorithm that client will use to protect message to RP when using the proof key (e.g. AES256)
EncryptionAlgorithm – used to indicate the symmetric algorithm that the STS SHOULD use to encrypt the T (e.g. AES256)

T contains symmetric key/STS uses asymmetric key to encrypt T for RP
EncryptWith – used to indicate symmetric algorithm that client will use to protect message to RP when using the proof key (e.g. AES256)
EncryptionAlgorithm – used to indicate the symmetric algorithm that the STS SHOULD use to encrypt T for RP (e.g. AES256)
KeyWrapAlgorithm – used to indicate the KeyWrap algorithm that the STS SHOULD use to wrap the generated key that is used to encrypt the T for RP

T contains asymmetric key/STS uses symmetric key to encrypt T for RP
EncryptWith – used to indicate the KeyWrap algorithm that the client will use to

2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532

2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543

2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571

protect the symmetric key that is used to protect messages to RP when using the proof key (e.g. RSA-OAEP-MGF1P)
EncryptionAlgorithm – used to indicate the symmetric algorithm that the STS SHOULD use to encrypt T for RP (e.g. AES256)

T contains asymmetric key/STS uses asymmetric key to encrypt T for RP EncryptWith - used to indicate the KeyWrap algorithm that the client will use to protect symmetric key that is used to protect message to RP when using the proof key (e.g. RSA-OAEP-MGF1P)
EncryptionAlgorithm - used to indicate the symmetric algorithm that the STS SHOULD use to encrypt T for RP (e.g. AES256)
KeyWrapAlgorithm – used to indicate the KeyWrap algorithm that the STS SHOULD use to wrap the generated key that is used to encrypt the T for RP

The example below illustrates a request that utilizes several of these parameters. A request is made for a custom token using a username and password as the basis of the request. For security, this token is encrypted (see "encUsername") for the recipient using the recipient's public key and referenced in the encryption manifest. The message is protected by a signature using a public key from the sender and authorized by the username and password.

The requestor would like the custom token to contain a 1024-bit public key whose value can be found in the key provided with the "proofSignature" signature (the key identified by "requestProofToken"). The token should be signed using RSA-SHA1 and encrypted for the token identified by "requestEncryptionToken". The proof should be encrypted using the token identified by "requestProofToken".

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..."
xmlns:wst="..." xmlns:ds="..." xmlns:xenc="...">
<S11:Header>
...
<wsse:Security>
<xenc:ReferenceList>...</xenc:ReferenceList>
<xenc:EncryptedData Id="encUsername">...</xenc:EncryptedData>
<wsse:BinarySecurityToken wsu:Id="requestEncryptionToken" ValueType="...SomeTokenType" xmlns:x="...">
MIIEZzCCA9CgAwIBAgIQEmtJZc0...
</wsse:BinarySecurityToken>
<wsse:BinarySecurityToken wsu:Id="requestProofToken" ValueType="...SomeTokenType" xmlns:x="...">
MIIEZzCCA9CgAwIBAgIQEmtJZc0...
</wsse:BinarySecurityToken>
<ds:Signature Id="proofSignature">
... signature proving requested key ...
... key info points to the "requestedProofToken" token ...
</ds:Signature>
</wsse:Security>
...
</S11:Header>
<S11:Body wsu:Id="req">
<wst:RequestSecurityToken>
<wst:TokenType> http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>

2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590

http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<wst:KeyType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/PublicKey
</wst:KeyType>
<wst:KeySize>1024</wst:KeySize>
<wst:SignatureAlgorithm> http://www.w3.org/2000/09/xmldsig#rsa-sha1
</wst:SignatureAlgorithm>
<wst:Encryption>
<Reference URI="#requestEncryptionToken"/>
</wst:Encryption>
<wst:ProofEncryption>
<wsse:Reference URI="#requestProofToken"/>
</wst:ProofEncryption>
<wst:UseKey Sig="#proofSignature"/>
</wst:RequestSecurityToken>
</S11:Body>
</S11:Envelope>

2591

2592
2593
2594
2595

2596
2597
2598
2599
2600
2601
2602
2603
2604

2605
2606
2607
2608

2609
2610
2611
2612
2613
2614

2615
2616
2617
2618
2619

2620
2621
2622
2623
9.3 [bookmark: _bookmark75]
Delegation and Forwarding Requirements

This section defines extensions to the <wst:RequestSecurityToken> element for indicating delegation and forwarding requirements on the requested security token(s).
The syntax for these extension elements is as follows (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
<wst:DelegateTo>...</wst:DelegateTo>
<wst:Forwardable>...</wst:Forwardable>
<wst:Delegatable>...</wst:Delegatable>
<wst14:ActAs>...</wst14:ActAs>
</wst:RequestSecurityToken>

/wst:RequestSecurityToken/wst:DelegateTo
This OPTIONAL element indicates that the requested or issued token be delegated to another identity. The identity receiving the delegation is specified by placing a security token or
<wsse:SecurityTokenReference> element within the <wst:DelegateTo> element.

/wst:RequestSecurityToken/wst:Forwardable
This OTPIONAL element, of type xs:boolean, specifies whether the requested security token SHOULD be marked as "Forwardable". In general, this flag is used when a token is normally bound to the requestor's machine or service. Using this flag, the returned token MAY be used from any source machine so long as the key is correctly proven. The default value of this flag is true.

/wst:RequestSecurityToken/wst:Delegatable
This OPTIONAL element, of type xs:boolean, specifies whether the requested security token SHOULD be marked as "Delegatable". Using this flag, the returned token MAY be delegated to another party. This parameter SHOULD be used in conjunction with <wst:DelegateTo>. The default value of this flag is false.

/wst:RequestSecurityToken/wst14:ActAs
This OTPIONAL element indicates that the requested token is expected to contain information about the identity represented by the content of this element and the token requestor intends to use the returned token to act as this identity. The identity that the requestor wants to act-as is

2624
2625

2626
2627

2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641

specified by placing a security token or <wsse:SecurityTokenReference> element within the
<wst14:ActAs> element.

The following illustrates the syntax of a request for a custom token that can be delegated to the indicated recipient (specified in the binary security token) and used in the specified interval.

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<wst:DelegateTo>
<wsse:BinarySecurityToken xmlns:wsse="...">
...
</wsse:BinarySecurityToken>
</wst:DelegateTo>
<wst:Delegatable>true</wst:Delegatable>
</wst:RequestSecurityToken>

2642

2643
2644
2645
2646

2647
2648
2649
2650
2651
2652
2653

2654
2655
2656
2657
2658
2659

2660
2661
2662
2663

2664
2665
2666

2667
2668
2669
2670
2671
2672
2673
2674
9.4 [bookmark: _bookmark76]
Policies

This section defines extensions to the <wst:RequestSecurityToken> element for passing policies.

The syntax for these extension elements is as follows (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
<wsp:Policy xmlns:wsp="...”>...</wsp:Policy>
<wsp:PolicyReference xmlns:wsp="...”>...</wsp:PolicyReference>
</wst:RequestSecurityToken>

The following describes the attributes and elements listed in the schema overview above:
/wst:RequestSecurityToken/wsp:Policy
This OPTIONAL element specifies a policy (as defined in [WS-Policy]) that indicates desired settings for the requested token. The policy specifies defaults that can be overridden by the elements defined in the previous sections.

/wst:RequestSecurityToken/wsp:PolicyReference
This OPTIONAL element specifies a reference to a policy (as defined in [WS-Policy]) that indicates desired settings for the requested token. The policy specifies defaults that can be overridden by the elements defined in the previous sections.

The following illustrates the syntax of a request for a custom token that provides a set of policy statements about the token or its usage requirements.

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<wsp:Policy xmlns:wsp="...">

2675
2676
2677

...
</wsp:Policy>
</wst:RequestSecurityToken>

2678

2679
2680
2681
2682
2683
2684
2685
2686
2687
2688

2689
2690
2691
2692
2693
2694
2695
2696
2697

2698
2699
2700
2701
2702
2703

2704
2705

2706
2707
2708

2709
2710
2711
9.5 [bookmark: _bookmark77]
Authorized Token Participants

This section defines extensions to the <wst:RequestSecurityToken> element for passing information about which parties are authorized to participate in the use of the token. This parameter is typically used when there are additional parties using the token or if the requestor needs to clarify the actual parties involved (for some profile-specific reason).
It should be noted that additional participants will need to prove their identity to recipients in addition to proving their authorization to use the returned token. This typically takes the form of a second signature or use of transport security.

The syntax for these extension elements is as follows (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
<wst:Participants>
<wst:Primary>...</wst:Primary>
<wst:Participant>...</wst:Participant>
</wst:Participants>
</wst:RequestSecurityToken>

The following describes elements and attributes used in a <wsc:SecurityContextToken> element.
/wst:RequestSecurityToken/wst:Participants/
This OPTIONAL element specifies the participants sharing the security token. Arbitrary types MAY be used to specify participants, but a typical case is a security token or an endpoint reference (see [WS-Addressing]).

/wst:RequestSecurityToken/wst:Participants/wst:Primary
This OPTIONAL element specifies the primary user of the token (if one exists).

/wst:RequestSecurityToken/wst:Participants/wst:Participant
This OPTIONAL element specifies participant (or multiple participants by repeating the element) that play a (profile-dependent) role in the use of the token or who are allowed to use the token.

/wst:RequestSecurityToken/wst:Participants/{any}
This is an extensibility option to allow other types of participants and profile-specific elements to be specified.

2712

2713
2714
2715
2716
2717

2718
2719
2720

2721
2722

2723

2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739

2740
2741
2742
2743
2744

2745

2746
2747
2748
2749
2750
2751
2752

2753
2754
2755
10 [bookmark: _bookmark78]
Key Exchange Token Binding

Using the token request framework, this section defines a binding for requesting a key exchange token (KET). That is, if a requestor desires a token that can be used to encrypt key material for a recipient.

For this binding, the following actions are defined to enable specific processing context to be conveyed to the recipient:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/KET http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KET http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/KETFinal

For this binding, the RequestType element contains the following URI:

http://docs.oasis-open.org/ws-sx/ws-trust/200512/KET

For this binding very few parameters are specified as input. OPTIONALLY the <wst:TokenType> element can be specified in the request can indicate desired type response token carrying the key for key exchange; however, this isn't commonly used.
The applicability scope (e.g. <wsp:AppliesTo>) MAY be specified if the requestor desires a key exchange token for a specific scope.

It is RECOMMENDED that the response carrying the key exchange token be secured (e.g., signed by the issuer or someone who can speak on behalf of the target for which the KET applies).

Care should be taken when using this binding to prevent possible man-in-the-middle and substitution attacks. For example, responses to this request SHOULD be secured using a token that can speak for the desired endpoint.

The RSTR for this binding carries the <RequestedSecurityToken> element even if a token is returned (note that the base elements described above are included here italicized for completeness):

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>...</wst:TokenType>
<wst:RequestType>...</wst:RequestType>
...
</wst:RequestSecurityToken>

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:TokenType>...</wst:TokenType>
<wst:RequestedSecurityToken>...</wst:RequestedSecurityToken>
...
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

The following illustrates the syntax for requesting a key exchange token. In this example, the KET is returned encrypted for the requestor since it had the credentials available to do that. Alternatively the

2756
2757

2758
2759
2760
2761
2762

2763

2764
2765
2766
2767
2768
2769
2770

request could be made using transport security (e.g. TLS) and the key could be returned directly using
<wst:BinarySecret>.

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/KET
</wst:RequestType>
</wst:RequestSecurityToken>

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xenc:EncryptedKey xmlns:xenc="...”>...</xenc:EncryptedKey>
</wst:RequestedSecurityToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

2771

2772
2773
2774
2775
2776
2777
2778
2779
11 [bookmark: _bookmark79]
Error Handling

There are many circumstances where an error can occur while processing security information. Errors use the SOAP Fault mechanism. Note that the reason text provided below is RECOMMENDED, but alternative text MAY be provided if more descriptive or preferred by the implementation. The tables below are defined in terms of SOAP 1.1. For SOAP 1.2, the Fault/Code/Value is env:Sender (as defined in SOAP 1.2) and the Fault/Code/Subcode/Value is the faultcode below and the Fault/Reason/Text is the faultstring below. It should be noted that profiles MAY provide second-level detail fields, but they should be careful not to introduce security vulnerabilities when doing so (e.g., by providing too detailed information).

	Error that occurred (faultstring)
	Fault code (faultcode)

	The request was invalid or malformed
	wst:InvalidRequest

	Authentication failed
	wst:FailedAuthentication

	The specified request failed
	wst:RequestFailed

	Security token has been revoked
	wst:InvalidSecurityToken

	Insufficient Digest Elements
	wst:AuthenticationBadElements

	The specified RequestSecurityToken is not understood.
	wst:BadRequest

	The request data is out-of-date
	wst:ExpiredData

	The requested time range is invalid or unsupported
	wst:InvalidTimeRange

	The request scope is invalid or unsupported
	wst:InvalidScope

	A renewable security token has expired
	wst:RenewNeeded

	The requested renewal failed
	wst:UnableToRenew

2780

2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
12 [bookmark: _bookmark80]
Security Considerations

As stated in the Goals section of this document, this specification is meant to provide extensible framework and flexible syntax, with which one could implement various security mechanisms. This framework and syntax by itself does not provide any guarantee of security. When implementing and using this framework and syntax, one must make every effort to ensure that the result is not vulnerable to any one of a wide range of attacks.

It is not feasible to provide a comprehensive list of security considerations for such an extensible set of mechanisms. A complete security analysis must be conducted on specific solutions based on this specification. Below we illustrate some of the security concerns that often come up with protocols of this type, but we stress that this is not an exhaustive list of concerns.
The following statements about signatures and signing apply to messages sent on unsecured channels. It is critical that all the security-sensitive message elements must be included in the scope of the
message signature. As well, the signatures for conversation authentication must include a timestamp,
nonce, or sequence number depending on the degree of replay prevention required as described in [WS- Security] and the UsernameToken Profile. Also, conversation establishment should include the policy so that supported algorithms and algorithm priorities can be validated.

It is required that security token issuance messages be signed to prevent tampering. If a public key is provided, the request should be signed by the corresponding private key to prove ownership. As well, additional steps should be taken to eliminate replay attacks (refer to [WS-Security] for additional information). Similarly, all token references should be signed to prevent any tampering.

Security token requests are susceptible to denial-of-service attacks. Care should be taken to mitigate such attacks as is warranted by the service.

For security, tokens containing a symmetric key or a password should only be sent to parties who have a need to know that key or password.

For privacy, tokens containing personal information (either in the claims, or indirectly by identifying who is currently communicating with whom) should only be sent according to the privacy policies governing these data at the respective organizations.

For some forms of multi-message exchanges, the exchanges are susceptible to attacks whereby signatures are altered. To address this, it is suggested that a signature confirmation mechanism be used. In such cases, each leg should include the confirmation of the previous leg. That is, leg 2 includes confirmation for leg 1, leg 3 for leg 2, leg 4 for leg 3, and so on. In doing so, each side can confirm the correctness of the message outside of the message body.

There are many other security concerns that one may need to consider in security protocols. The list above should not be used as a "check list" instead of a comprehensive security analysis.

2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837

It should be noted that use of unsolicited RSTRs implies that the recipient is prepared to accept such issuances. Recipients should ensure that such issuances are properly authorized and recognize their use could be used in denial-of-service attacks.
In addition to the consideration identified here, readers should also review the security considerations in [WS-Security].

Both token cancellation bindings defined in this specification require that the STS MUST NOT validate or renew the token after it has been successfully canceled. The STS must take care to ensure that the token is properly invalidated before confirming the cancel request or sending the cancel notification to the client. This can be more difficult if the token validation or renewal logic is physically separated from the issuance and cancellation logic. It is out of scope of this spec how the STS propagates the token cancellation to its other components. If STS cannot ensure that the token was properly invalidated it MUST NOT send the cancel notification or confirm the cancel request to the client.

2838

2839

2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
13 [bookmark: _bookmark81]
Conformance

An implementation conforms to this specification if it satisfies all of the MUST or REQUIRED level requirements defined within this specification. A SOAP Node MUST NOT use the XML namespace identifier for this specification (listed in Section 1.3) within SOAP Envelopes unless it is compliant with this specification.
This specification references a number of other specifications (see the table above). In order to comply with this specification, an implementation MUST implement the portions of referenced specifications necessary to comply with the required provisions of this specification. Additionally, the implementation of the portions of the referenced specifications that are specifically cited in this specification MUST comply with the rules for those portions as established in the referenced specification.
Additionally normative text within this specification takes precedence over normative outlines (as described in section 1.5.1), which in turn take precedence over the XML Schema [XML Schema Part 1, Part 2] and WSDL [WSDL 1.1] descriptions. That is, the normative text in this specification further constrains the schemas and/or WSDL that are part of this specification; and this specification contains further constraints on the elements defined in referenced schemas.
This specification defines a number of extensions; compliant services are NOT REQUIRED to implement OPTIONAL features defined in this specification. However, if a service implements an aspect of the specification, it MUST comply with the requirements specified (e.g. related "MUST" statements). If an OPTIONAL message is not supported, then the implementation SHOULD Fault just as it would for any other unrecognized/unsupported message. If an OPTIONAL message is supported, then the implementation MUST satisfy all of the MUST and REQUIRED sections of the message.

2860
[bookmark: _bookmark82]
Appendix A. Key Exchange

2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877

2878

2879
2880
2881
2882
2883
2884

2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898

Key exchange is an integral part of token acquisition. There are several mechanisms by which keys are exchanged using [WS-Security] and WS-Trust. This section highlights and summarizes these mechanisms. Other specifications and profiles MAY provide additional details on key exchange.

Care must be taken when employing a key exchange to ensure that the mechanism does not provide an attacker with a means of discovering information that could only be discovered through use of secret information (such as a private key).

It is therefore important that a shared secret should only be considered as trustworthy as its source. A shared secret communicated by means of the direct encryption scheme described in section I.1 is acceptable if the encryption key is provided by a completely trustworthy key distribution center (this is the case in the Kerberos model). Such a key would not be acceptable for the purposes of decrypting information from the source that provided it since an attacker might replay information from a prior transaction in the hope of learning information about it.

In most cases the other party in a transaction is only imperfectly trustworthy. In these cases both parties SHOULD contribute entropy to the key exchange by means of the <wst:entropy> element.

A.1 [bookmark: _bookmark83]Ephemeral Encryption Keys

The simplest form of key exchange can be found in [WS-Security] for encrypting message data. As described in [WS-Security] and [XML-Encrypt], when data is encrypted, a temporary key can be used to perform the encryption which is, itself, then encrypted using the <xenc:EncryptedKey> element.

The illustrates the syntax for encrypting a temporary key using the public key in an issuer name and serial number:

<xenc:EncryptedKey xmlns:xenc="...">
...
<ds:KeyInfo xmlns:ds="...">
<wsse:SecurityTokenReference xmlns:wsse="...">
<ds:X509IssuerSerial>
<ds:X509IssuerName> DC=ACMECorp, DC=com
</ds:X509IssuerName>
<ds:X509SerialNumber>12345678</ds:X509SerialNumber>
</ds:X509IssuerSerial>
</wsse:SecurityTokenReference>
</ds:KeyInfo>
...
</xenc:EncryptedKey>

2899

2900
2901
2902
2903
A.2 [bookmark: _bookmark84]
Requestor-Provided Keys

When a request sends a message to an issuer to request a token, the client can provide proposed key material using the <wst:Entropy> element. If the issuer doesn't contribute any key material, this is used as the secret (key). This information is encrypted for the issuer either using
<xenc:EncryptedKey> or by using a transport security. If the requestor provides key material that the

2904
2905
2906
2907
2908
2909
2910

2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921

recipient doesn't accept, then the issuer SHUOLD reject the request. Note that the issuer need not return the key provided by the requestor.

The following illustrates the syntax of a request for a custom security token and includes a secret that is to be used for the key. In this example the entropy is encrypted for the issuer (if transport security was used for confidentiality then the <wst:Entropy> element would contain a <wst:BinarySecret> element):

<wst:RequestSecurityToken xmlns:wst="...”>
<wst:TokenType>
http://example.org/mySpecialToken
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<wst:Entropy>
<xenc:EncryptedData xmlns:xenc="...">...</xenc:EncryptedData>
</wst:Entropy>
</wst:RequestSecurityToken>

2922

2923
2924
2925
2926
2927
2928

2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
A.3 [bookmark: _bookmark85]
Issuer-Provided Keys

If a requestor fails to provide key material, then issued proof-of-possession tokens contain an issuer- provided secret that is encrypted for the requestor (either using <xenc:EncryptedKey> or by using a transport security).

The following illustrates the syntax of a token being returned with an associated proof-of-possession token that is encrypted using the requestor's public key.

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey xmlns:xenc="..." Id="newProof">
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

2943

2944
2945
2946
2947
2948
2949
2950
2951
2952
A.4 [bookmark: _bookmark86]
Composite Keys

The safest form of key exchange/generation is when both the requestor and the issuer contribute to the key material. In this case, the request sends encrypted key material. The issuer then returns additional encrypted key material. The actual secret (key) is computed using a function of the two pieces of data. Ideally this secret is never used and, instead, keys derived are used for message protection.

The following example illustrates a server, having received a request with requestor entropy returning its own entropy, which is used in conjunction with the requestor's to generate a key. In this example the entropy is not encrypted because the transport is providing confidentiality (otherwise the
<wst:Entropy> element would have an <xenc:EncryptedData> element).

2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:Entropy>
<wst:BinarySecret>UIH...</wst:BinarySecret>
</wst:Entropy>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

2965

2966
A.5 [bookmark: _bookmark87]
Key Transfer and Distribution

There are also a few mechanisms where existing keys are transferred to other parties.

2967

2968
2969
2970
2971
2972
2973
2974
2975
2976

2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
A.5.1 [bookmark: _bookmark88]
Direct Key Transfer

If one party has a token and key and wishes to share this with another party, the key can be directly transferred. This is accomplished by sending an RSTR (either in the body or header) to the other party. The RSTR contains the token and a proof-of-possession token that contains the key encrypted for the recipient.

In the following example a custom token and its associated proof-of-possession token are known to party A who wishes to share them with party B. In this example, A is a member in a secure on-line chat session and is inviting B to join the conversation. After authenticating B, A sends B an RSTR. The RSTR contains the token and the key is communicated as a proof-of-possession token that is encrypted for B:

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey xmlns:xenc="..."	Id="newProof">
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

2991

2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
A.5.2 [bookmark: _bookmark89]
Brokered Key Distribution

A third party MAY also act as a broker to transfer keys. For example, a requestor may obtain a token and proof-of-possession token from a third-party STS. The token contains a key encrypted for the target service (either using the service's public key or a key known to the STS and target service). The proof-of- possession token contains the same key encrypted for the requestor (similarly this can use public or symmetric keys).

In the following example a custom token and its associated proof-of-possession token are returned from a broker B to a requestor R for access to service S. The key for the session is contained within the custom token encrypted for S using either a secret known by B and S or using S's public key. The same secret is encrypted for R and returned as the proof-of-possession token:

3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
<xenc:EncryptedKey xmlns:xenc="...">
...
</xenc:EncryptedKey>
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey Id="newProof">
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

3020

3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033

3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
A.5.3 [bookmark: _bookmark90]
Delegated Key Transfer

Key transfer can also take the form of delegation. That is, one party transfers the right to use a key without actually transferring the key. In such cases, a delegation token, e.g. XrML, is created that identifies a set of rights and a delegation target and is secured by the delegating party. That is, one key indicates that another key can use a subset (or all) of its rights. The delegate can provide this token and prove itself (using its own key – the delegation target) to a service. The service, assuming the trust relationships have been established and that the delegator has the right to delegate, can then authorize requests sent subject to delegation rules and trust policies.

In this example a custom token is issued from party A to party B. The token indicates that B (specifically B's key) has the right to submit purchase orders. The token is signed using a secret key known to the target service T and party A (the key used to ultimately authorize the requests that B makes to T), and a new session key that is encrypted for T. A proof-of-possession token is included that contains the session key encrypted for B. As a result, B is effectively using A's key, but doesn't actually know the key.

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...”>
<wst:RequestSecurityTokenResponse>
<wst:RequestedSecurityToken>
<xyz:CustomToken xmlns:xyz="...">
...
<xyz:DelegateTo>B</xyz:DelegateTo>
<xyz:DelegateRights>
SubmitPurchaseOrder
</xyz:DelegateRights>
<xenc:EncryptedKey xmlns:xenc="...">
...
</xenc:EncryptedKey>
<ds:Signature xmlns:ds="...">...</ds:Signature>
...
</xyz:CustomToken>
</wst:RequestedSecurityToken>
<wst:RequestedProofToken>
<xenc:EncryptedKey xmlns:xenc="..." Id="newProof">
...
</xenc:EncryptedKey>
</wst:RequestedProofToken>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

3057

3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081

3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099

3100
3101
3102

3103
3104
A.5.4 [bookmark: _bookmark91]
Authenticated Request/Reply Key Transfer

In some cases the RST/RSTR mechanism is not used to transfer keys because it is part of a simple request/reply. However, there may be a desire to ensure mutual authentication as part of the key transfer. The mechanisms of [WS-Security] can be used to implement this scenario.

Specifically, the sender wishes the following:
· Transfer a key to a recipient that they can use to secure a reply
· Ensure that only the recipient can see the key
· Provide proof that the sender issued the key

This scenario could be supported by encrypting and then signing. This would result in roughly the following steps:
1. Encrypt the message using a generated key
2. Encrypt the key for the recipient
3. Sign the encrypted form, any other relevant keys, and the encrypted key

However, if there is a desire to sign prior to encryption then the following general process is used:
1. Sign the appropriate message parts using a random key (or ideally a key derived from a random key)
2. Encrypt the appropriate message parts using the random key (or ideally another key derived from the random key)
3. Encrypt the random key for the recipient
4. Sign just the encrypted key

This would result in a <wsse:Security> header that looks roughly like the following:

<wsse:Security xmlns:wsse="..." xmlns:wsu="..." xmlns:ds="..." xmlns:xenc="...">
<wsse:BinarySecurityToken wsu:Id="myToken">
...
</wsse:BinarySecurityToken>
<ds:Signature>
...signature over #secret using token #myToken...
</ds:Signature>
<xenc:EncryptedKey Id="secret">
...
</xenc:EncryptedKey>
<xenc:RefrenceList>
...manifest of encrypted parts using token #secret...
</xenc:RefrenceList>
<ds:Signature>
...signature over key message parts using token #secret...
</ds:Signature>
</wsse:Security>

As well, instead of an <xenc:EncryptedKey> element, the actual token could be passed using
<xenc:EncryptedData>. The result might look like the following:

<wsse:Security xmlns:wsse="..." xmlns:wsu="..." xmlns:ds="..." xmlns:xenc="...">

3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120

<wsse:BinarySecurityToken wsu:Id="myToken">
...
</wsse:BinarySecurityToken>
<ds:Signature>
...signature over #secret or #Esecret using token #myToken...
</ds:Signature>
<xenc:EncryptedData Id="Esecret”>
...Encrypted version of a token with Id="secret"...
</xenc:EncryptedData>
<xenc:RefrenceList>
...manifest of encrypted parts using token #secret...
</xenc:RefrenceList>
<ds:Signature>
...signature over key message parts using token #secret...
</ds:Signature>
</wsse:Security>

3121

3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
[bookmark: _bookmark92]
A.6 Perfect Forward Secrecy

In some situations it is desirable for a key exchange to have the property of perfect forward secrecy. This means that it is impossible to reconstruct the shared secret even if the private keys of the parties are disclosed.

The most straightforward way to attain perfect forward secrecy when using asymmetric key exchange is to dispose of one's key exchange key pair periodically (or even after every key exchange), replacing it with a fresh one. Of course, a freshly generated public key must still be authenticated (using any of the methods normally available to prove the identity of a public key's owner).

The perfect forward secrecy property MAY be achieved by specifying a <wst:entropy> element that contains an <xenc:EncryptedKey> that is encrypted under a public key pair created for use in a single key agreement. The public key does not require authentication since it is only used to provide additional entropy. If the public key is modified, the key agreement will fail. Care should be taken, when using this method, to ensure that the now-secret entropy exchanged via the <wst:entropy> element is not revealed elsewhere in the protocol (since such entropy is often assumed to be publicly revealed plaintext, and treated accordingly).

Although any public key scheme might be used to achieve perfect forward secrecy (in either of the above methods) it is generally desirable to use an algorithm that allows keys to be generated quickly. The Diffie- Hellman key exchange is often used for this purpose since generation of a key only requires the generation of a random integer and calculation of a single modular exponent.

3143
[bookmark: _bookmark93]
Appendix B. WSDL

3144
3145

3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200

The WSDL below does not fully capture all the possible message exchange patterns, but captures the typical message exchange pattern as described in this document.

<?xml version="1.0"?>
<wsdl:definitions
targetNamespace="http://docs.oasis-open.org/ws-sx/ws- trust/200512/wsdl"
xmlns:tns="http://docs.oasis-open.org/ws-sx/ws-trust/200512/wsdl" xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
>
<!-- this is the WS-I BP-compliant way to import a schema -->
<wsdl:types>
<xs:schema>
<xs:import
namespace="http://docs.oasis-open.org/ws-sx/ws-trust/200512" schemaLocation="http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-
trust.xsd"/>
</xs:schema>
</wsdl:types>

<!-- WS-Trust defines the following GEDs -->
<wsdl:message name="RequestSecurityTokenMsg">
<wsdl:part name="request" element="wst:RequestSecurityToken" />
</wsdl:message>
<wsdl:message name="RequestSecurityTokenResponseMsg">
<wsdl:part name="response"
element="wst:RequestSecurityTokenResponse" />
</wsdl:message>
<wsdl:message name="RequestSecurityTokenCollectionMsg">
<wsdl:part name="requestCollection" element="wst:RequestSecurityTokenCollection"/>
</wsdl:message>
<wsdl:message name="RequestSecurityTokenResponseCollectionMsg">
<wsdl:part name="responseCollection" element="wst:RequestSecurityTokenResponseCollection"/>
</wsdl:message>

<!-- This portType an example of a Requestor (or other) endpoint that Accepts SOAP-based challenges from a Security Token Service -->
<wsdl:portType name="WSSecurityRequestor">
<wsdl:operation name="Challenge">
<wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>
<wsdl:output message="tns:RequestSecurityTokenResponseMsg"/>
</wsdl:operation>
</wsdl:portType>

<!-- This portType is an example of an STS supporting full protocol -->
<wsdl:portType name="SecurityTokenService">
<wsdl:operation name="Cancel">
<wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws- trust/200512/RST/Cancel" message="tns:RequestSecurityTokenMsg"/>
<wsdl:output wsam:Action="http://docs.oasis-open.org/ws-sx/ws- trust/200512/RSTR/CancelFinal" message="tns:RequestSecurityTokenResponseMsg"/>
</wsdl:operation>
<wsdl:operation name="Issue">

3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241

<wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws- trust/200512/RST/Issue" message="tns:RequestSecurityTokenMsg"/>
<wsdl:output wsam:Action="http://docs.oasis-open.org/ws-sx/ws- trust/200512/RSTRC/IssueFinal" message="tns:RequestSecurityTokenResponseCollectionMsg"/>
</wsdl:operation>
<wsdl:operation name="Renew">
<wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws- trust/200512/RST/Renew" message="tns:RequestSecurityTokenMsg"/>
<wsdl:output wsam:Action="http://docs.oasis-open.org/ws-sx/ws- trust/200512/RSTR/RenewFinal" message="tns:RequestSecurityTokenResponseMsg"/>
</wsdl:operation>
<wsdl:operation name="Validate">
<wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws- trust/200512/RST/Validate" message="tns:RequestSecurityTokenMsg"/>
<wsdl:output wsam:Action=http://docs.oasis-open.org/ws-sx/ws- trust/200512/RSTR/ValidateFinal message="tns:RequestSecurityTokenResponseMsg"/>
</wsdl:operation>
<wsdl:operation name="KeyExchangeToken">
<wsdl:input wsam:Action="http://docs.oasis-open.org/ws-sx/ws- trust/200512/RST/KET" message="tns:RequestSecurityTokenMsg"/>
<wsdl:output wsam:Action="http://docs.oasis-open.org/ws-sx/ws- trust/200512/RSTR/KETFinal" message="tns:RequestSecurityTokenResponseMsg"/>
</wsdl:operation>
<wsdl:operation name="RequestCollection">
<wsdl:input message="tns:RequestSecurityTokenCollectionMsg"/>
<wsdl:output message="tns:RequestSecurityTokenResponseCollectionMsg"/>
</wsdl:operation>
</wsdl:portType>

<!-- This portType is an example of an endpoint that accepts Unsolicited RequestSecurityTokenResponse messages -->
<wsdl:portType name="SecurityTokenResponseService">
<wsdl:operation name="RequestSecurityTokenResponse">
<wsdl:input message="tns:RequestSecurityTokenResponseMsg"/>
</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

3242
[bookmark: _bookmark94]
Appendix C. Acknowledgements

3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288

The following individuals have participated in the creation of this specification and are gratefully acknowledged:
Original Authors of the initial contribution:
Steve Anderson, OpenNetwork Jeff Bohren, OpenNetwork Toufic Boubez, Layer 7
Marc Chanliau, Computer Associates Giovanni Della-Libera, Microsoft Brendan Dixon, Microsoft
Praerit Garg, Microsoft
Martin Gudgin (Editor), Microsoft Phillip Hallam-Baker, VeriSign Maryann Hondo, IBM
Chris Kaler, Microsoft
Hal Lockhart, Oracle Corporation Robin Martherus, Oblix
Hiroshi Maruyama, IBM
Anthony Nadalin (Editor), IBM Nataraj Nagaratnam, IBM Andrew Nash, Reactivity
Rob Philpott, RSA Security
Darren Platt, Ping Identity Hemma Prafullchandra, VeriSign Maneesh Sahu, Actional
John Shewchuk, Microsoft Dan Simon, Microsoft
Davanum Srinivas, Computer Associates Elliot Waingold, Microsoft
David Waite, Ping Identity
Doug Walter, Microsoft
Riaz Zolfonoon, RSA Security

Original Acknowledgments of the initial contribution:
Paula Austel, IBM
Keith Ballinger, Microsoft Bob Blakley, IBM
John Brezak, Microsoft Tony Cowan, IBM
Cédric Fournet, Microsoft Vijay Gajjala, Microsoft HongMei Ge, Microsoft Satoshi Hada, IBM Heather Hinton, IBM
Slava Kavsan, RSA Security
Scott Konersmann, Microsoft
Leo Laferriere, Computer Associates

3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332

Paul Leach, Microsoft
Richard Levinson, Computer Associates John Linn, RSA Security
Michael McIntosh, IBM
Steve Millet, Microsoft Birgit Pfitzmann, IBM Fumiko Satoh, IBM Keith Stobie, Microsoft
T.R. Vishwanath, Microsoft Richard Ward, Microsoft Hervey Wilson, Microsoft

TC Members during the development of this specification:
Don Adams, Tibco Software Inc.
Jan Alexander, Microsoft Corporation Steve Anderson, BMC Software Donal Arundel, IONA Technologies Howard Bae, Oracle Corporation Abbie Barbir, Nortel Networks Limited Charlton Barreto, Adobe Systems Mighael Botha, Software AG, Inc.
Toufic Boubez, Layer 7 Technologies Inc. Norman Brickman, Mitre Corporation Melissa Brumfield, Booz Allen Hamilton Lloyd Burch, Novell
Geoff Bullen, Microsoft Corporation Scott Cantor, Internet2
Greg Carpenter, Microsoft Corporation Steve Carter, Novell
Ching-Yun (C.Y.) Chao, IBM
Martin Chapman, Oracle Corporation Kate Cherry, Lockheed Martin
Henry (Hyenvui) Chung, IBM Luc Clement, Systinet Corp.
Paul Cotton, Microsoft Corporation Glen Daniels, Sonic Software Corp. Peter Davis, Neustar, Inc.
Martijn de Boer, SAP AG
Duane DeCouteau, Veterans Health Administration Werner Dittmann, Siemens AG
Abdeslem DJAOUI, CCLRC-Rutherford Appleton Laboratory Fred Dushin, IONA Technologies
Petr Dvorak, Systinet Corp.
Colleen Evans, Microsoft Corporation

3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374

Ruchith Fernando, WSO2
Mark Fussell, Microsoft Corporation Vijay Gajjala, Microsoft Corporation Marc Goodner, Microsoft Corporation Hans Granqvist, VeriSign
Martin Gudgin, Microsoft Corporation Tony Gullotta, SOA Software Inc. Jiandong Guo, Sun Microsystems Phillip Hallam-Baker, VeriSign
Patrick Harding, Ping Identity Corporation Heather Hinton, IBM
Frederick Hirsch, Nokia Corporation Jeff Hodges, Neustar, Inc.
Will Hopkins, Oracle Corporation Alex Hristov, Otecia Incorporated John Hughes, PA Consulting Diane Jordan, IBM
Venugopal K, Sun Microsystems Chris Kaler, Microsoft Corporation Dana Kaufman, Forum Systems, Inc. Paul Knight, Nortel Networks Limited
Ramanathan Krishnamurthy, IONA Technologies Christopher Kurt, Microsoft Corporation
Kelvin Lawrence, IBM
Hubert Le Van Gong, Sun Microsystems Jong Lee, Oracle Corporation
Rich Levinson, Oracle Corporation Tommy Lindberg, Dajeil Ltd.
Mark Little, JBoss Inc.
Hal Lockhart, Oracle Corporation
Mike Lyons, Layer 7 Technologies Inc. Eve Maler, Sun Microsystems
Ashok Malhotra, Oracle Corporation Anand Mani, CrimsonLogic Pte Ltd Jonathan Marsh, Microsoft Corporation Robin Martherus, Oracle Corporation Miko Matsumura, Infravio, Inc.
Gary McAfee, IBM Michael McIntosh, IBM
John Merrells, Sxip Networks SRL Jeff Mischkinsky, Oracle Corporation Prateek Mishra, Oracle Corporation

 (
w
s
-
t
ru
s
t
-1
.
4-erra
t
a01-o
s
-
c
o
m
p
lete St
andard
s

T
ra
c
k

W
o
r
k

P
rodu
c
t
) (
2
5 A
pr
il

2
0
1
2
P
ag
e
85

o
f
 85
) (
Cop
y
r
ig
h
t

©
O
A
S
I
S

O
pe
n

2012
.

A
l
l

R
ig
h
t
s

R
e
s
er
v
ed
.
)
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405

Bob Morgan, Internet2
Vamsi Motukuru, Oracle Corporation Raajmohan Na, EDS
Anthony Nadalin, IBM Andrew Nash, Reactivity, Inc.
Eric Newcomer, IONA Technologies Duane Nickull, Adobe Systems Toshihiro Nishimura, Fujitsu Limited Rob Philpott, RSA Security
Denis Pilipchuk, Oracle Corporation Darren Platt, Ping Identity Corporation Martin Raepple, SAP AG
Nick Ragouzis, Enosis Group LLC Prakash Reddy, CA
Alain Regnier, Ricoh Company, Ltd. Irving Reid, Hewlett-Packard
Bruce Rich, IBM
Tom Rutt, Fujitsu Limited
Maneesh Sahu, Actional Corporation
Frank Siebenlist, Argonne National Laboratory Joe Smith, Apani Networks
Davanum Srinivas, WSO2
David Staggs, Veterans Health Administration Yakov Sverdlov, CA
Gene Thurston, AmberPoint
Victor Valle, IBM
Asir Vedamuthu, Microsoft Corporation Greg Whitehead, Hewlett-Packard Ron Williams, IBM
Corinna Witt, Oracle Corporation Kyle Young, Microsoft Corporation
image3.png
Senice s

1: Service Arequests token from Service B

SeniceB

image1.png
OASIS)

image2.jpeg
Securty chins
Tokan

oy /
Reguestor
Chims ... Securty
T
oy
web
senice
secy | [cims
Token

