[bookmark: _GoBack]

PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 2.40

OASIS Standard 14 April 2015
Specification URIs
This version:
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/os/pkcs11-hist-v2.40-os.doc (Authoritative) http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/os/pkcs11-hist-v2.40-os.html http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/os/pkcs11-hist-v2.40-os.pdf
Previous version:
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/cs01/pkcs11-hist-v2.40-cs01.doc
(Authoritative)
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/cs01/pkcs11-hist-v2.40-cs01.html http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/cs01/pkcs11-hist-v2.40-cs01.pdf
Latest version:
http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.doc (Authoritative) http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.pdf
Technical Committee:
OASIS PKCS 11 TC

 (
p
k
c
s
11-h
i
s
t
-
v
2
.
40-os
St
andard
s

T
ra
c
k

W
o
r
k

P
rodu
c
t
) (
1
4 A
pr
il

201
5
P
ag
e
1

o
f
 67
) (
Cop
y
r
ig
h
t

©
O
A
S
I
S

O
pe
n

2015
.

A
l
l

R
ig
h
t
s

R
e
s
er
v
ed
.
)
Chairs:

Robert Griffin (robert.griffin@rsa.com), EMC Corporation
Valerie Fenwick (valerie.fenwick@oracle.com), Oracle

Editors:
Susan Gleeson (susan.gleeson@oracle.com), Oracle
Chris Zimman (chris@wmpp.com), Individual
Related work:
This specification is related to:
· PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. Edited by Susan Gleeson and Chris Zimman. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11- base/v2.40/pkcs11-base-v2.40.html.
· PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Edited by Tim Hudson.
Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-profiles/v2.40/pkcs11-profiles- v2.40.html.
· PKCS #11 Cryptographic Token Interface Current Mechanisms Specification Version 2.40.
Edited by Susan Gleeson and Chris Zimman. Latest version. http://docs.oasis- open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html.
· PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by John Leiseboer and Robert Griffin. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-
ug/v2.40/pkcs11-ug-v2.40.html.

Abstract:
This document defines mechanisms for PKCS #11 that are no longer in general use.

Status:

This document was last revised or approved by the membership of OASIS on the above date. The level of approval is also listed above. Check the “Latest version” location noted above for possible later revisions of this document. Any other numbered Versions and other technical work produced by the Technical Committee (TC) are listed at https://www.oasis- open.org/committees/tc_home.php?wg_abbrev=pkcs11#technical.
TC members should send comments on this specification to the TC’s email list. Others should send comments to the TC’s public comment list, after subscribing to it by following the instructions at the “Send A Comment” button on the TC’s web page at https://www.oasis- open.org/committees/pkcs11/.
For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (https://www.oasis- open.org/committees/pkcs11/ipr.php).

Citation format:
When referencing this specification the following citation format should be used:
[PKCS11-Hist-v2.40]
PKCS #11 Cryptographic Token Interface Historical Mechanisms Specification Version 2.40. Edited by Susan Gleeson and Chris Zimman. 14 April 2015. OASIS Standard. http://docs.oasis- open.org/pkcs11/pkcs11-hist/v2.40/os/pkcs11-hist-v2.40-os.html. Latest version: http://docs.oasis-open.org/pkcs11/pkcs11-hist/v2.40/pkcs11-hist-v2.40.html.

Notices

Copyright © OASIS Open 2015. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
The name "OASIS" is a trademark of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-guidelines/trademark for above guidance.

Table of Contents

Introduction	8
Description of this Document	8
Terminology	8
Definitions	8
Normative References	9
Non-Normative References	9
Mechanisms 	12
PKCS #11 Mechanisms 	12
FORTEZZA timestamp 	15
KEA 	15
Definitions 	15
KEA mechanism parameters 	15
KEA public key objects 	16
KEA private key objects 	17
KEA key pair generation 	17
KEA key derivation 	18
RC2 	19
Definitions 	19
RC2 secret key objects 	19
RC2 mechanism parameters 	20
RC2 key generation 	21
RC2-ECB 	21
RC2-CBC 	22
RC2-CBC with PKCS padding 	22
General-length RC2-MAC 	23
RC2-MAC 	23
RC4 	24
Definitions 	24
RC4 secret key objects 	24
RC4 key generation 	24
RC4 mechanism 	25
RC5 	25
Definitions 	25
RC5 secret key objects 	25
RC5 mechanism parameters 	26
RC5 key generation 	27
RC5-ECB 	27
RC5-CBC 	28
RC5-CBC with PKCS padding 	28
General-length RC5-MAC 	29
RC5-MAC 	29
General block cipher 	30
Definitions 	30
DES secret key objects 	31
CAST secret key objects 	32
CAST3 secret key objects 	32
CAST128 (CAST5) secret key objects 	33
IDEA secret key objects 	33
CDMF secret key objects 	34
General block cipher mechanism parameters 	34
General block cipher key generation 	34
General block cipher ECB 	35
General block cipher CBC 	35
General block cipher CBC with PCKS padding 	36
General-length general block cipher MAC 	37
General block cipher MAC 	37
SKIPJACK 	38
Definitions 	38
SKIPJACK secret key objects 	38
SKIPJACK Mechanism parameters 	39
SKIPJACK key generation 	41
SKIPJACK-ECB64 	41
SKIPJACK-CBC64 	41
SKIPJACK-OFB64 	41
SKIPJACK-CFB64 	42
SKIPJACK-CFB32 	42
SKIPJACK-CFB16 	42
SKIPJACK-CFB8 	43
SKIPJACK-WRAP 	43
SKIPJACK-PRIVATE-WRAP 	43
SKIPJACK-RELAYX 	43
BATON 	43
Definitions 	43
BATON secret key objects 	44
BATON key generation 	44
BATON-ECB128 	45
BATON-ECB96 	45
BATON-CBC128 	45
BATON-COUNTER 	46
BATON-SHUFFLE 	46
BATON WRAP 	46
JUNIPER 	46
Definitions 	46
JUNIPER secret key objects 	47
JUNIPER key generation 	47
JUNIPER-ECB128 	48
JUNIPER-CBC128 	48
JUNIPER-COUNTER 	48
JUNIPER-SHUFFLE 	48
JUNIPER WRAP 	49
MD2 	49
Definitions 	49
MD2 digest 	49
General-length MD2-HMAC 	49
MD2-HMAC 	50
MD2 key derivation 	50
MD5 	50
Definitions 	50
MD5 Digest 	51
General-length MD5-HMAC 	51
MD5-HMAC 	51
MD5 key derivation 	51
FASTHASH 	52
Definitions 	52
FASTHASH digest 	52
PKCS #5 and PKCS #5-style password-based encryption (PBD) 	52
Definitions 	52
Password-based encryption/authentication mechanism parameters 	53
MD2-PBE for DES-CBC 	53
MD5-PBE for DES-CBC 	53
MD5-PBE for CAST-CBC 	54
MD5-PBE for CAST3-CBC 	54
MD5-PBE for CAST128-CBC (CAST5-CBC) 	54
SHA-1-PBE for CAST128-CBC (CAST5-CBC) 	54
PKCS #12 password-based encryption/authentication mechanisms 	55
Definitions 	55
SHA-1-PBE for 128-bit RC4 	55
SHA-1_PBE for 40-bit RC4 	56
SHA-1_PBE for 128-bit RC2-CBC 	56
SHA-1_PBE for 40-bit RC2-CBC 	56
RIPE-MD 	56
Definitions 	56
RIPE-MD 128 Digest 	57
General-length RIPE-MD 128-HMAC 	57
RIPE-MD 128-HMAC 	57
RIPE-MD 160 	57
General-length RIPE-MD 160-HMAC 	58
RIPE-MD 160-HMAC 	58
SET 	58
Definitions 	58
SET mechanism parameters 	58
OAEP key wrapping for SET 	59
LYNKS 	59
Definitions 	59
LYNKS key wrapping 	59
PKCS #11 Implementation Conformance 	60
Appendix A.	Acknowledgments 	61
Appendix B.	Manifest constants 	64
Appendix C.	Revision History 	67

1 [bookmark: _bookmark0]1	Introduction

2 [bookmark: _bookmark1]1.1 Description of this Document

3 This document defines historical PKCS#11 mechanisms, that is, mechanisms that were defined for earlier
4 versions of PKCS #11 but are no longer in general use 5
6 All text is normative unless otherwise labeled.

7 [bookmark: _bookmark2]1.2 Terminology

8 The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
9 NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 10	in [RFC2119].
11

12 [bookmark: _bookmark3]1.3 Definitions

13 For the purposes of this standard, the following definitions apply. Please refer to [PKCS#11-Base] for
14 further definitions
	15
	BATON
	MISSI’s BATON block cipher.

	16
	CAST
	Entrust Technologies’ proprietary symmetric block cipher

	17
	CAST3
	Entrust Technologies’ proprietary symmetric block cipher

	18
	CAST5
	Another name for Entrust Technologies’ symmetric block cipher

	19
	
	CAST128. CAST128 is the preferred name.

	20
	CAST128
	Entrust Technologies’ symmetric block cipher.

	21
	CDMF
	Commercial Data Masking Facility, a block encipherment method

	22
	
	specified by International Business Machines Corporation and

	23
	
	based on DES.

	24
	CMS
	Cryptographic Message Syntax (see RFC 3369)

	25
	DES
	Data Encryption Standard, as defined in FIPS PUB 46-3

	26
	ECB
	Electronic Codebook mode, as defined in FIPS PUB 81.

	27
	FASTHASH
	MISSI’s FASTHASH message-digesting algorithm.

	28
	IDEA
	Ascom Systec’s symmetric block cipher.

	29
	IV
	Initialization Vector.

	30
	JUNIPER
	MISSI’s JUNIPER block cipher.

	31
	KEA
	MISSI’s Key Exchange Algorithm.

	32
	LYNKS
	A smart card manufactured by SPYRUS.

	33
	MAC
	Message Authentication Code

	34
	MD2
	RSA Security’s MD2 message-digest algorithm, as defined in RFC

	35
	
	6149.

	36
	MD5
	RSA Security’s MD5 message-digest algorithm, as defined in RFC

	37
	
	1321.

38 PRF	Pseudo random function.

39 RSA	The RSA public-key cryptosystem.

40 RC2	RSA Security’s RC2 symmetric block cipher.

41 RC4	RSA Security’s proprietary RC4 symmetric stream cipher.

42 RC5	RSA Security’s RC5 symmetric block cipher.

43 SET	The Secure Electronic Transaction protocol.

44 SHA-1	The (revised) Secure Hash Algorithm with a 160-bit message digest,
45 as defined in FIPS PUB 180-2.

46 SKIPJACK	MISSI’s SKIPJACK block cipher. 47

48 [bookmark: _bookmark4]1.4 Normative References

49 [PKCS #11-Base]	PKCS #11 Cryptographic Token Interface Base Specification Version 2.40.
50 Edited by Susan Gleeson and Chris Zimman. Latest version. http://docs.oasis-
51 open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html.
52
53 [PKCS #11-Curr]	PKCS #11 Cryptographic Token Interface Current Mechanisms Specification
54 Version 2.40. Edited by Susan Gleeson and Chris Zimman. Latest version.
55 http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/pkcs11-curr-v2.40.html.
56
57 [PKCS #11-Prof]	PKCS #11 Cryptographic Token Interface Profiles Version 2.40. Edited by Tim
58 Hudson. Latest version. http://docs.oasis-open.org/pkcs11/pkcs11-
59 profiles/v2.40/pkcs11-profiles-v2.40.html.
60
61 [RFC2119]	Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP
62 14, RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt.
63

64 [bookmark: _bookmark5]1.5 Non-Normative References

65 [ANSI C]	ANSI/ISO. American National Standard for Programming Languages – C. 1990
66 [ANSI X9.31]	Accredited Standards Committee X9. Digital Signatures Using Reversible Public
67 Key Cryptography for the Financial Services Industry (rDSA). 1998.
68 [ANSI X9.42]	Accredited Standards Committee X9. Public Key Cryptography for the Financial
69 Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm
70 Cryptography. 2003
71 [ANSI X9.62]	Accredited Standards Committee X9. Public Key Cryptography for the Financial
72 Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). 1998
73 [CC/PP]	G. Klyne, F. Reynolds, C. , H. Ohto, J. Hjelm, M. H. Butler, L. Tran, Editors,
74 W3C. Composite Capability/Preference Profiles (CC/PP): Structure and
75 Vocabularies. 2004, URL: http://www.w3.org/TR/2004/REC-CCPP-struct-
76	vocab-20040115/
77 [CDPD]	Ameritech Mobile Communications et al. Cellular Digital Packet Data System
78 Specifications: Part 406: Airlink Security. 1993
79 [FIPS PUB 46-3]	NIST. FIPS 46-3: Data Encryption Standard (DES). October 26, 2999. URL:
80 http://csrc.nist.gov/publications/fips/index.html
81 [FIPS PUB 81]	NIST. FIPS 81: DES Modes of Operation. December 1980. URL:
82 http://csrc.nist.gov/publications/fips/index.html

83 [FIPS PUB 113]	NIST. FIPS 113: Computer Data Authentication. May 30, 1985. URL:
84 http://csrc.nist.gov/publications/fips/index.html
85 [FIPS PUB 180-2] NIST. FIPS 180-2: Secure Hash Standard. August 1, 2002. URL:
86 http://csrc.nist.gov/publications/fips/index.html
87 [FORTEZZA CIPG]NSA, Workstation Security Products. FORTEZZA Cryptologic Interface
88 Programmers Guide, Revision 1.52. November 1985
	89
	[GCS-API]
	X/Open Company Ltd. Generic Cryptographic Service API (GCS-API), Base –

	90
	
	Draft 2. February 14, 1995.

	91
	[ISO/IEC 7816-1]
	ISO/IEC 7816-1:2011. Identification Cards – Integrated circuit cards -- Part 1:

	92
	
	Cards with contacts -- Physical Characteristics. 2011 URL:

	93
	
	http://www.iso.org/iso/catalogue_detail.htm?csnumber=54089.

	94
	[ISO/IEC 7816-4]
	ISO/IEC 7618-4:2013. Identification Cards – Integrated circuit cards – Part 4:

	95
	
	Organization, security and commands for interchange. 2013. URL:

	96
	
	http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumb

	97
	
	er=54550.

	98
	[ISO/IEC 8824-1]
	ISO/IEC 8824-1:2008. Abstract Syntax Notation One (ASN.1): Specification of

	99
	
	Base Notation. 2002. URL:

	100
	
	http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=

	101
	
	54012

	102
	[ISO/IEC 8825-1]
	ISO/IEC 8825-1:2008. Information Technology – ASN.1 Encoding Rules:

	103
	
	Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),

	104
	
	and Distinguished Encoding Rules (DER). 2008. URL:

	105
	
	http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnum

	106
	
	ber=54011&ics1=35&ics2=100&ics3=60

	107
	[ISO/IEC 9594-1]
	ISO/IEC 9594-1:2008. Information Technology – Open System Interconnection –

	108
	
	The Directory: Overview of Concepts, Models and Services. 2008. URL:

	109
	
	http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumb

	110
	
	er=53364

	111
	[ISO/IEC 9594-8]
	ISO/IEC 9594-8:2008. Information Technology – Open Systems Interconnection

	112
	
	– The Directory: Public-key and Attribute Certificate Frameworks. 2008 URL:

	113
	
	http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumb

	114
	
	er=53372

	115
	[ISO/IEC 9796-2]
	ISO/IEC 9796-2:2010. Information Technology – Security Techniques – Digital

	116
	
	Signature Scheme Giving Message Recovery – Part 2: Integer factorization

	117
	
	based mechanisms. 2010. URL:

	118
	
	http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumb

	119
	
	er=54788

	120
	[Java MIDP]
	Java Community Process. Mobile Information Device Profile for Java 2 Micro

	121
	
	Edition. November 2002. URL: http://jcp.org/jsr/detail/118.jsp

	122
	[MeT-PTD]
	MeT. MeT PTD Definition – Personal Trusted Device Definition, Version 1.0.

	123
	
	February 2003. URL: http://www.mobiletransaction.org

	124
	[PCMCIA]
	Personal Computer Memory Card International Association. PC Card Standard,

	125
	
	Release 2.1. July 1993.

	126
	[PKCS #1]
	RSA Laboratories. RSA Cryptography Standard, v2.1. June 14, 2002 URL:

	127
	
	ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

	128
	[PKCS #3]
	RSA Laboratories. Diffie-Hellman Key-Agreement Standard, v1.4. November

	129
	
	1993.

	130
	[PKCS #5]
	RSA Laboratories. Password-Based Encryption Standard, v2.0. March 26,

	131
	
	1999. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs-5v2-0a1.pdf

	132
	[PKCS #7]
	RSA Laboratories. Cryptographic Message Syntax Standard, v1.6. November

	133
	
	1997 URL : ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-7/pkcs-7v16.pdf

	134
	[PKCS #8]
	RSA Laboratories. Private-Key Information Syntax Standard, v1.2. November

	135
	
	1993. URL : ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-8/pkcs-8v1_2.asn

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

[PKCS #11-UG]	PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by John Leiseboer and Robert Griffin. Latest version. http://docs.oasis- open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html.
[PKCS #12]	RSA Laboratories. Personal Information Exchange Syntax Standard, v1.0.
June 1999. URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf
[RFC 1321]	R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT Laboratory for Computer Science and RSA Data Security, Inc., April 1992. URL: http://www.rfc-editor.org/rfc/rfc1321.txt
[RFC 3369]	R. Houseley. RFC 3369: Cryptographic Message Syntax (CMS). August 2002.
URL: http://www.rfc-editor.org/rfc/rfc3369.txt
[RFC 6149]	S. Turner and L. Chen. RFC 6149: MD2 to Historic Status. March, 2011. URL:
http://www.rfc-editor.org/rfc/rfc6149.txt
[SEC-1]	Standards for Efficient Cryptography Group (SECG). Standards for Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography. Version 1.0, September 20, 2000.
[SEC-2]	Standards for Efficient cryptography Group (SECG). Standards for Efficient Cryptography (SEC) 2: Recommended Elliptic Curve Domain Parameters. Version 1.0, September 20, 2000.
[TLS]	IETF. RFC 2246: The TLS Protocol Version 1.0. January 1999. URL:
http://ieft.org/rfc/rfc2256.txt
[WIM] WAP. Wireless Identity Module. – WAP-260-WIP-20010712.a. July 2001. URL: http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc Name=/wap/wap-260-wim-20010712-a.pdf
[WPKI]	WAP. Wireless Application Protocol: Public Key Infrastructure Definition. – WAP- 217-WPKI-20010424-a. April 2001. URL:
http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc Name=/wap/wap-217-wpki-20010424-a.pdf
[WTLS]	WAP. Wireless Transport Layer Security Version – WAP-261-WTLS-20010406-
a. April 2001. URL: http://technical.openmobilealliance.org/tech/affiliates/LicenseAgreement.asp?Doc Name=/wap/wap-261-wtls-20010406-a.pdf
[X.500]	ITU-T. Information Technology – Open Systems Interconnection –The Directory: Overview of Concepts, Models and Services. February 2001. (Identical to ISO/IEC 9594-1)
[X.509]	ITU-T. Information Technology – Open Systems Interconnection – The Directory: Public-key and Attribute Certificate Frameworks. March 2000. (Identical to ISO/IEC 9594-8)
[X.680]	ITU-T. Information Technology – Abstract Syntax Notation One (ASN.1): Specification of Basic Notation. July 2002. (Identical to ISO/IEC 8824-1)
[X.690]	ITU-T. Information Technology – ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER). July 2002. (Identical to ISO/IEC 8825-1)

179
2 [bookmark: _bookmark6]
Mechanisms

180

181
182
183
184
185
186
187
188
189
190
191
2.1 [bookmark: _bookmark7]
PKCS #11 Mechanisms

A mechanism specifies precisely how a certain cryptographic process is to be performed. PKCS #11 implementations MAY use one or more mechanisms defined in this document.

The following table shows which Cryptoki mechanisms are supported by different cryptographic operations. For any particular token, of course, a particular operation MAY support only a subset of the mechanisms listed. There is also no guarantee that a token which supports one mechanism for some operation supports any other mechanism for any other operation (or even supports that same mechanism for any other operation). For example, even if a token is able to create RSA digital signatures with the CKM_RSA_PKCS mechanism, it may or may not be the case that the same token MAY also perform RSA encryption with CKM_RSA_PKCS.

Table 1, Mechanisms vs. Functions

	

Mechanism
	Functions

	
	Encrypt
& Decrypt
	Sign
& Verify
	SR
& VR1
	
Digest
	Gen. Key/ Key Pair
	Wrap
& Unwrap
	
Derive

	CKM_FORTEZZA_TIMESTAMP
	
	X2
	
	
	
	
	

	CKM_KEA_KEY_PAIR_GEN
	
	
	
	
	X
	
	

	CKM_KEA_KEY_DERIVE
	
	
	
	
	
	
	X

	CKM_RC2_KEY_GEN
	
	
	
	
	X
	
	

	CKM_RC2_ECB
	X
	
	
	
	
	X
	

	CKM_RC2_CBC
	X
	
	
	
	
	X
	

	CKM_RC2_CBC_PAD
	X
	
	
	
	
	X
	

	CKM_RC2_MAC_GENERAL
	
	X
	
	
	
	
	

	CKM_RC2_MAC
	
	X
	
	
	
	
	

	CKM_RC4_KEY_GEN
	
	
	
	
	X
	
	

	CKM_RC4
	X
	
	
	
	
	
	

	CKM_RC5_KEY_GEN
	
	
	
	
	X
	
	

	CKM_RC5_ECB
	X
	
	
	
	
	X
	

	CKM_RC5_CBC
	X
	
	
	
	
	X
	

	CKM_RC5_CBC_PAD
	X
	
	
	
	
	X
	

	CKM_RC5_MAC_GENERAL
	
	X
	
	
	
	
	

	CKM_RC5_MAC
	
	X
	
	
	
	
	

	CKM_DES_KEY_GEN
	
	
	
	
	X
	
	

	CKM_DES_ECB
	X
	
	
	
	
	X
	

	CKM_DES_CBC
	X
	
	
	
	
	X
	

	CKM_DES_CBC_PAD
	X
	
	
	
	
	X
	

	CKM_DES_MAC_GENERAL
	
	X
	
	
	
	
	

	CKM_DES_MAC
	
	X
	
	
	
	
	

	CKM_CAST_KEY_GEN
	
	
	
	
	X
	
	

	CKM_CAST_ECB
	X
	
	
	
	
	X
	

	CKM_CAST_CBC
	X
	
	
	
	
	X
	

	CKM_CAST_CBC_PAD
	X
	
	
	
	
	X
	

	

Mechanism
	Functions

	
	Encrypt
& Decrypt
	Sign
& Verify
	SR
& VR1
	
Digest
	Gen. Key/ Key Pair
	Wrap
& Unwrap
	
Derive

	CKM_CAST_MAC_GENERAL
	
	X
	
	
	
	
	

	CKM_CAST_MAC
	
	X
	
	
	
	
	

	CKM_CAST3_KEY_GEN
	
	
	
	
	X
	
	

	CKM_CAST3_ECB
	X
	
	
	
	
	X
	

	CKM_CAST3_CBC
	X
	
	
	
	
	X
	

	CKM_CAST3_CBC_PAD
	X
	
	
	
	
	X
	

	CKM_CAST3_MAC_GENERAL
	
	X
	
	
	
	
	

	CKM_CAST3_MAC
	
	X
	
	
	
	
	

	CKM_CAST128_KEY_GEN
(CKM_CAST5_KEY_GEN)
	
	
	
	
	X
	
	

	CKM_CAST128_ECB
(CKM_CAST5_ECB)
	X
	
	
	
	
	X
	

	CKM_CAST128_CBC
(CKM_CAST5_CBC)
	X
	
	
	
	
	X
	

	CKM_CAST128_CBC_PAD
(CKM_CAST5_CBC_PAD)
	X
	
	
	
	
	X
	

	CKM_CAST128_MAC_GENERAL
(CKM_CAST5_MAC_GENERAL)
	
	X
	
	
	
	
	

	CKM_CAST128_MAC
(CKM_CAST5_MAC)
	
	X
	
	
	
	
	

	CKM_IDEA_KEY_GEN
	
	
	
	
	X
	
	

	CKM_IDEA_ECB
	X
	
	
	
	
	X
	

	CKM_IDEA_CBC
	X
	
	
	
	
	X
	

	CKM_IDEA_CBC_PAD
	X
	
	
	
	
	X
	

	CKM_IDEA_MAC_GENERAL
	
	X
	
	
	
	
	

	CKM_IDEA_MAC
	
	X
	
	
	
	
	

	CKM_CDMF_KEY_GEN
	
	
	
	
	X
	
	

	CKM_CDMF_ECB
	X
	
	
	
	
	X
	

	CKM_CDMF_CBC
	X
	
	
	
	
	X
	

	CKM_CDMF_CBC_PAD
	X
	
	
	
	
	X
	

	CKM_CDMF_MAC_GENERAL
	
	X
	
	
	
	
	

	CKM_CDMF_MAC
	
	X
	
	
	
	
	

	CKM_SKIPJACK_KEY_GEN
	
	
	
	
	X
	
	

	CKM_SKIPJACK_ECB64
	X
	
	
	
	
	
	

	CKM_SKIPJACK_CBC64
	X
	
	
	
	
	
	

	CKM_SKIPJACK_OFB64
	X
	
	
	
	
	
	

	CKM_SKIPJACK_CFB64
	X
	
	
	
	
	
	

	CKM_SKIPJACK_CFB32
	X
	
	
	
	
	
	

	CKM_SKIPJACK_CFB16
	X
	
	
	
	
	
	

	CKM_SKIPJACK_CFB8
	X
	
	
	
	
	
	

	CKM_SKIPJACK_WRAP
	
	
	
	
	
	X
	

	CKM_SKIPJACK_PRIVATE_WRAP
	
	
	
	
	
	X
	

	CKM_SKIPJACK_RELAYX
	
	
	
	
	
	X3
	

	CKM_BATON_KEY_GEN
	
	
	
	
	X
	
	

	CKM_BATON_ECB128
	X
	
	
	
	
	
	

	CKM_BATON_ECB96
	X
	
	
	
	
	
	

	

Mechanism
	Functions

	
	Encrypt
& Decrypt
	Sign
& Verify
	SR
& VR1
	
Digest
	Gen. Key/ Key Pair
	Wrap
& Unwrap
	
Derive

	CKM_BATON_CBC128
	X
	
	
	
	
	
	

	CKM_BATON_COUNTER
	X
	
	
	
	
	
	

	CKM_BATON_SHUFFLE
	X
	
	
	
	
	
	

	CKM_BATON_WRAP
	
	
	
	
	
	X
	

	CKM_JUNIPER_KEY_GEN
	
	
	
	
	X
	
	

	CKM_JUNIPER_ECB128
	X
	
	
	
	
	
	

	CKM_JUNIPER_CBC128
	X
	
	
	
	
	
	

	CKM_JUNIPER_COUNTER
	X
	
	
	
	
	
	

	CKM_JUNIPER_SHUFFLE
	X
	
	
	
	
	
	

	CKM_JUNIPER_WRAP
	
	
	
	
	
	X
	

	CKM_MD2
	
	
	
	X
	
	
	

	CKM_MD2_HMAC_GENERAL
	
	X
	
	
	
	
	

	CKM_MD2_HMAC
	
	X
	
	
	
	
	

	CKM_MD2_KEY_DERIVATION
	
	
	
	
	
	
	X

	CKM_MD5
	
	
	
	X
	
	
	

	CKM_MD5_HMAC_GENERAL
	
	X
	
	
	
	
	

	CKM_MD5_HMAC
	
	X
	
	
	
	
	

	CKM_MD5_KEY_DERIVATION
	
	
	
	
	
	
	X

	CKM_RIPEMD128
	
	
	
	X
	
	
	

	CKM_RIPEMD128_HMAC_GENERAL
	
	X
	
	
	
	
	

	CKM_RIPEMD128_HMAC
	
	X
	
	
	
	
	

	CKM_RIPEMD160
	
	
	
	X
	
	
	

	CKM_RIPEMD160_HMAC_GENERAL
	
	X
	
	
	
	
	

	CKM_RIPEMD160_HMAC
	
	X
	
	
	
	
	

	CKM_FASTHASH
	
	
	
	X
	
	
	

	CKM_PBE_MD2_DES_CBC
	
	
	
	
	X
	
	

	CKM_PBE_MD5_DES_CBC
	
	
	
	
	X
	
	

	CKM_PBE_MD5_CAST_CBC
	
	
	
	
	X
	
	

	CKM_PBE_MD5_CAST3_CBC
	
	
	
	
	X
	
	

	CKM_PBE_MD5_CAST128_CBC
(CKM_PBE_MD5_CAST5_CBC)
	
	
	
	
	X
	
	

	CKM_PBE_SHA1_CAST128_CBC
(CKM_PBE_SHA1_CAST5_CBC)
	
	
	
	
	X
	
	

	CKM_PBE_SHA1_RC4_128
	
	
	
	
	X
	
	

	CKM_PBE_SHA1_RC4_40
	
	
	
	
	X
	
	

	CKM_PBE_SHA1_RC2_128_CBC
	
	
	
	
	X
	
	

	CKM_PBE_SHA1_RC2_40_CBC
	
	
	
	
	X
	
	

	CKM_PBA_SHA1_WITH_SHA1_HMAC
	
	
	
	
	X
	
	

	CKM_KEY_WRAP_SET_OAEP
	
	
	
	
	
	X
	

	CKM_KEY_WRAP_LYNKS
	
	
	
	
	
	X
	

192
193
194
195
196
1
SR = SignRecover, VR = VerifyRecover.
2 Single-part operations only.
3 Mechanism MUST only be used for wrapping, not unwrapping.
The remainder of this section presents in detail the mechanisms supported by Cryptoki and the parameters which are supplied to them.

197
198
199

200

201
202
203
204
205
206
207

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen fields of the CK_MECHANISM_INFO structure, then those fields have no meaning for that particular mechanism.

2.2 [bookmark: _bookmark8]FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP, is a mechanism for single-part signatures and verification. The signatures it produces and verifies are DSA digital signatures over the provided hash value and the current time.
It has no parameters.
Constraints on key types and the length of data are summarized in the following table. The input and output data MAY begin at the same location in memory.

Table 2, FORTEZZA Timestamp: Key and Data Length

	Function
	Key type
	Input Length
	Output Length

	C_Sign1
	DSA private key
	20
	40

	C_Verify1
	DSA public key
	20,402
	N/A

208
209
210
211

212
1
Single-part operations only

2 Data length, signature length

For this mechanism, the ulMinKeySIze and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in bits.

2.3 [bookmark: _bookmark9]KEA

213

214
215
216
217
218
2.3.1 [bookmark: _bookmark10]
Definitions

This section defines the key type “CKK_KEA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_KEA_KEY_PAIR_GEN CKM_KEA_KEY_DERIVE

219

2.3.2 [bookmark: _bookmark11]KEA mechanism parameters

220

221
222
223

224
225
226
227
228
229
230
231

232
233

2.3.2.1 CK_KEA_DERIVE_PARAMS; CK_KEA_DERIVE_PARAMS_PTR

CK_KEA_DERIVE_PARAMS is a structure that provides the parameters to the CKM_KEA_DERIVE
mechanism. It is defined as follows:

typedef struct CK_KEA_DERIVE_PARAMS { CK_BBOOL isSender;
CK_ULONG ulRandomLen; CK_BYTE_PTR pRandomA; CK_BYTE_PTR pRandomB; CK_ULONG ulPublicDataLen; CK_BYTE_PTR pPublicData;
} CK_KEA_DERIVE_PARAMS;

The fields of the structure have the following meanings:

234
235
236

isSender	Option for generating the key (called a TEK). The value is CK_TRUE if the sender (originator) generates the TEK, CK_FALSE if the recipient is regenerating the TEK

237

ulRandomLen	the size of random Ra and Rb in bytes

238

pRandomA	pointer to Ra data

239

pRandomB	pointer to Rb data

240

ulPublicDataLen	other party’s KEA public key size

241

pPublicData	pointer to other party’s KEA public key value

242

CK_KEA_DERIVE_PARAMS_PTR is a pointer to a CK_KEA_DERIVE_PARAMS.

243

244
245
246
247
2.3.3 [bookmark: _bookmark12]
KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold KEA public keys. The following table defines the KEA public key object attributes, in addition to the common attributes defined for this object class:

Table 3, KEA Public Key Object Attributes

	Attribute
	Data type
	Meaning

	CKA_PRIME1,3
	Big integer
	Prime p (512 to 1024 bits, in steps of 64 bits)

	CKA_SUBPRIME1,3
	Big integer
	Subprime q (160 bits)

	CKA_BASE1,3
	Big integer
	Base g (512 to 1024 bits, in steps of 64 bits)

	CKA_VALUE1,4
	Big integer
	Public value y

248
249
250
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

269

- Refer to [PKCS #11-Base] table 10 for footnotes
The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “KEA domain parameters”.
The following is a sample template for creating a KEA public key object:

CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_UTF8CHAR label[] = “A KEA public key object”; CK_BYTE prime[] = {…};
CK_BYTE subprime[] = {…}; CK_BYTE base[] = {…}; CK_BYTE value[] = {…}; CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_SUBPRIME, subprime, sizeof(subprime)},
{CKA_BASE, base, sizeof(base)},
{CKA_VALUE, value, sizeof(value)}
};

270

271
272
273
274
2.3.4 [bookmark: _bookmark13]
KEA private key objects

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA) hold KEA private keys. The following table defines the KEA private key object attributes, in addition to the common attributes defined for this object class:

Table 4, KEA Private Key Object Attributes

	Attribute
	Data type
	Meaning

	CKA_PRIME1,4,6
	Big integer
	Prime p (512 to 1024 bits, in steps of 64 bits)

	CKA_SUBPRIME1,4,6
	Big integer
	Subprime q (160 bits)

	CKA_BASE1,4,6
	Big integer
	Base g (512 to 1024 bits, in steps of 64 bits)

	CKA_VALUE1,4,6,7
	Big integer
	Private value x

275
276
277
278
279
280
281
282

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

Refer to [PKCS #11-Base] table 10 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “KEA domain parameters”.
Note that when generating a KEA private key, the KEA parameters are not specified in the key’s template. This is because KEA private keys are only generated as part of a KEA key pair, and the KEA parameters for the pair are specified in the template for the KEA public key.
The following is a sample template for creating a KEA private key object:

CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_UTF8CHAR label[] = “A KEA private key object”; CK_BYTE subject[] = {…};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {…}; CK_BYTE subprime[] = {…}; CK_BYTE base[] = {…}; CK_BYTE value[] = {…]; CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},Algorithm, as defined by NISTS
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label) -1},
{CKA_SUBJECT, subject, sizeof(subject)},
{CKA_ID, id, sizeof(id)},
{CKA_SENSITIVE, &true, sizeof(true)},
{CKA_DERIVE, &true, sizeof(true)},
{CKA_PRIME, prime, sizeof(prime)},
{CKA_SUBPRIME, subprime, sizeof(subprime)},
{CKA_BASE, base, sizeof(base)],
{CKA_VALUE, value, sizeof(value)}
};

307

308
309
310
311
312
313
2.3.5 [bookmark: _bookmark14]
KEA key pair generation

The KEA key pair generation mechanism, denoted CKM_KEA_KEY_PAIR_GEN, generates key pairs for the Key Exchange Algorithm, as defined by NIST’s “SKIPJACK and KEA Algorithm Specification Version 2.0”, 29 May 1998.
It does not have a parameter.
The mechanism generates KEA public/private key pairs with a particular prime, subprime and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the template for the public

314
315
316
317
318
319
320
321
322

key. Note that this version of Cryptoki does not include a mechanism for generating these KEA domain parameters.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the new private key. Other attributes supported by the KEA public and private key types (specifically, the flags indicating which functions the keys support) MAY also be specified in the templates for the keys, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of KEA prime sizes, in bits.

323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
2.3.6 [bookmark: _bookmark15]
KEA key derivation

The KEA key derivation mechanism, denoted CKM_DEA_DERIVE, is a mechanism for key derivation based on KEA, the Key Exchange Algorithm, as defined by NIST’s “SKIPJACK and KEA Algorithm Specification Version 2.0”, 29 May 1998.
It has a parameter, a CK_KEA_DERIVE_PARAMS structure.
This mechanism derives a secret value, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
As defined in the Specification, KEA MAY be used in two different operational modes: full mode and e- mail mode. Full mode is a two-phase key derivation sequence that requires real-time parameter exchange between two parties. E-mail mode is a one-phase key derivation sequence that does not require real-time parameter exchange. By convention, e-mail mode is designated by use of a fixed value of one (1) for the KEA parameter Rb (pRandomB).
The operation of this mechanism depends on two of the values in the supplied CK_KEA_DERIVE_PARAMS structure, as detailed in the table below. Note that in all cases, the data buffers pointed to by the parameter structure fields pRandomA and pRandomB must be allocated by the caller prior to invoking C_DeriveKey. Also, the values pointed to by pRandomA and pRandomB are represented as Cryptoki “Big integer” data (i.e., a sequence of bytes, most significant byte first).

Table 5, KEA Parameter Values and Operations

	Value of boolean
isSender
	Value of big integer
pRandomB
	Token Action
(after checking parameter and template values)

	CK_TRUE
	
0
	Compute KEA Ra value, store it in pRandomA, return CKR_OK. No derived key object is created.

	CK_TRUE
	1
	Compute KEA Ra value, store it in pRandomA, derive key value using e-mail mode, create key object, return CKR_OK.

	CK_TRUE
	>1
	Compute KEA Ra value, store it in pRandomA, derive key value using full mode, create key object, return CKR_OK

	CK_FALSE
	0
	Compute KEA Rb value, store it in pRandomB, return CKR_OK. No derived key object is created.

	CK_FALSE
	1
	Derive key value using e-mail mode, create key object, return CKR_OK.

	CK_FALSE
	>1
	Derive key value using full mode, create key object, return CKR_OK.

344
345

Note that the parameter value pRandomB == 0 is a flag that the KEA mechanism is being invoked to compute the party’s public random value (Ra or Rb, for sender or recipient, respectively), not to derive a

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362

key. In these cases, any object template supplied as the C_DeriveKey pTemplate argument should be ignored.
This mechanism has the following rules about key sensitivity and extractability*:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key MAY both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key MUST as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key MUST, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of KEA prime sizes, in bits.

2.4 [bookmark: _bookmark16]RC2

363

364
365
366
367
368
369
370
371
372
373
374
375
376
377
2.4.1 [bookmark: _bookmark17]
Definitions

RC2 is a block cipher which is trademarked by RSA Security. It has a variable keysizse and an additional parameter, the “effective number of bits in the RC2 search space”, which MAY take on values in the
range 1-1024, inclusive. The effective number of bits in the RC2 search space is sometimes specified by an RC2 “version number”; this “version number” is not the same thing as the “effective number of bits”, however. There is a canonical way to convert from one to the other.
This section defines the key type “CKK_RC2” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_RC2_KEY_GEN CKM_RC2_ECB CKM_RC2_CBC CKM_RC2_MAC CKM_RC2_MAC_GENERAL CKM_RC2_CBC_PAD

378

379
380
381
382

2.4.2 [bookmark: _bookmark18]RC2 secret key objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold RC2 keys. The following table defines the RC2 secret key object attributes, in addition to the common attributes defined for this object class:

Table 6, RC2 Secret Key Object Attributes

	Attribute
	Data type
	Meaning

* Note that the rules regarding the CKA_SENSITIVE, CKA_EXTRACTABLE, CKA_ALWAYS_SENSITIVE, and CKA_NEVER_EXTRACTABLE attributes have changed in version
2.11 to match the policy used by other key derivation mechanisms such as
CKM_SSL3_MASTER_KEY_DERIVE.

	CKA_VALUE1,4,6,7
	Byte array
	Key value (1 to 128 bytes)

	CKA_VALUE_LEN2,3
	CK_ULONG
	Length in bytes of key value

383
384

385
386
387
388
389
390
391
392
393
394
395
396
397

Refer to [PKCS #11-Base] table 10 for footnotes
The following is a sample template for creating an RC2 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC2;
CK_UTF8CHAR label[] = “An RC2 secret key object”; CK_BYTE value[] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

398
2.4.3 [bookmark: _bookmark19]
RC2 mechanism parameters

399

400
401

402

403
2.4.3.1
K_RC2_PARAMS; CK_RC2_PARAMS_PTR

CK_RC2_PARAMS provides the parameters to the CKM_RC2_ECB and CMK_RC2_MAC mechanisms. It holds the effective number of bits in the RC2 search space. It is defined as follows:

typedef CK_ULONG CK_RC2_PARAMS;

CK_RC2_PARAMS_PTR is a pointer to a CK_RC2_PARAMS.

404

405
406

407
408
409
410

411

412
2.4.3.2
K_RC2_CBC_PARAMS; CK_RC2_CBC_PARAMS_PTR

CK_RC2_CBC_PARAMS is a structure that provides the parameters to the CKM_RC2_CBC and
CKM_RC2_CBC_PAD mechanisms. It is defined as follows:

typedef struct CK_RC2_CBC_PARAMS { CK_ULONG ulEffectiveBits; CK_BYTE iv[8];
} CK_RC2_CBC_PARAMS;

The fields of the structure have the following meanings:
ulEffectiveBits	the effective number of bits in the RC2 search space

413
414

iv	the initialization vector (IV) for cipher block chaining mode

415

CK_RC2_CBC_PARAMS_PTR is a pointer to a CK_RC2_CBC_PARAMS.

416
417

418
419

420
421
422
423
2.4.3.3
K_RC2_MAC_GENERAL_PARAMS; CK_RC2_MAC_GENERAL_PARAMS_PTR

CK_RC2_MAC_GENERAL_PARAMS is a structure that provides the parameters to the
CKM_RC2_MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK_RC2_MAC_GENERAL_PARAMS { CK_ULONG ulEffectiveBits;
CK_ULONG ulMacLength;
} CK_RC2_MAC_GENERAL_PARAMS;

424

425

The fields of the structure have the following meanings:
ulEffectiveBits	the effective number of bits in the RC2 search space

426

ulMacLength	length of the MAC produced, in bytes

427

CK_RC2_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_RC2_MAC_GENERAL_PARAMS.

428

429
430
431
432
433
434
435
436
437
438
2.4.4 [bookmark: _bookmark20]
RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2_KEY_GEN, is a key generation mechanism for RSA Security’s block cipher RC2.
It does not have a parameter.
The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the RC2 key type (specifically, the flags indicating which functions the key supports) MAY be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC2 key sizes, in bits.

439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
2.4.5 [bookmark: _bookmark21]
RC2-ECB

RC2-ECB, denoted CKM_RC2_ECB, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC2 and electronic codebook mode as defined in FIPS PUB 81.
It has a parameter, a CK_RC2_PARAMS, which indicates the effective number of bits in the RC2 search space.
This mechanism MAY wrap and unwrap any secret key. Of course, a particular token MAY not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to seven null bytes so that the resulting length is a multiple of eight. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:

Table 7 RC2-ECB: Key and Data Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	RC2
	Multiple of 8
	Same as input length
	No final part

	C_Decrypt
	RC2
	Multiple of 8
	Same as input length
	No final part

	C_WrapKey
	RC2
	Any
	Input length rounded up to multiple of 8
	

	C_UnwrapKey
	RC2
	Multiple of 8
	Determined by type of key being unwrapped or CKA_VALUE_LEN
	

457
458

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC2 effective number of bits.

459

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
2.4.6 [bookmark: _bookmark22]
RC2-CBC

RC2_CBC, denoted CKM_RC2_CBC, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC2 and cipher- block chaining mode as defined in FIPS PUB 81.
It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates the effective number of bits in the RC2 search space, and the next field is the initialization vector for cipher block chaining mode.
This mechanism MAY wrap and unwrap any secret key. Of course, a particular token MAY not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to seven null bytes so that the resulting length is a multiple of eight. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:

Table 8, RC2-CBC: Key and Data Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	RC2
	Multiple of 8
	Same as input length
	No final part

	C_Decrypt
	RC2
	Multiple of 8
	Same as input length
	No final part

	C_WrapKey
	RC2
	Any
	Input length rounded up to multiple of 8
	

	C_UnwrapKey
	RC2
	Multiple of 8
	Determined by type of key being unwrapped or CKA_VALUE_LEN
	

478
479

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC2 effective number of bits.

480

481
482
483
484
485
486
487
488
489
490
491
492
2.4.7 [bookmark: _bookmark23]
RC2-CBC with PKCS padding

RC2-CBC with PKCS padding, denoted CKM_RC2_CBC_PAD, is a mechanism for single- and multiple- part encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC2; cipher-block chaining mode as defined in FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.
It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates the effective number of bits in the RC2 search space, and the next field is the initialization vector.
The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the CKA_VALUE_LEN attribute.
In addition to being able to wrap and unwrap secret keys, this mechanism MAY wrap and unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see [PKCS #11- Curr], Miscellaneous simple key derivation mechanisms for details). The entries in the table below

493
494
495
496

for data length constraints when wrapping and unwrapping keys do not apply to wrapping and unwrapping private keys.
Constraints on key types and the length of data are summarized in the following table:

Table 9, RC2-CBC with PKCS Padding: Key and Data Length

	Function
	Key type
	Input length
	Output length

	C_Encrypt
	RC2
	Any
	Input length rounded up to multiple of 8

	C_Decrypt
	RC2
	Multiple of 8
	Between 1 and 8 bytes shorter than input length

	C_WrapKey
	RC2
	Any
	Input length rounded up to multiple of 8

	C_UnwrapKey
	RC2
	Multiple of 8
	Between 1 and 8 bytes shorter than input length

497
498

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC2 effective number of bits.

499

500
501
502
503
504
505
506
507
508
2.4.8 [bookmark: _bookmark24]
General-length RC2-MAC

General-length RC2-MAC, denoted CKM_RC2_MAC_GENERAL, is a mechanism for single-and multiple-part signatures and verification, based on RSA Security’s block cipher RC2 and data authorization as defined in FIPS PUB 113.
It has a parameter, a CK_RC2_MAC_GENERAL_PARAMS structure, which specifies the effective number of bits in the RC2 search space and the output length desired from the mechanism.
The output bytes from this mechanism are taken from the start of the final RC2 cipher block produced in the MACing process.
Constraints on key types and the length of data are summarized in the following table:

Table 10, General-length RC2-MAC: Key and Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	RC2
	Any
	0-8, as specified in parameters

	C_Verify
	RC2
	Any
	0-8, as specified in parameters

509
510

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC2 effective number of bits.

511

512
513
514
515
516
517
518
2.4.9 [bookmark: _bookmark25]
RC2-MAC

RC2-MAC, denoted by CKM_RC2_MAC, is a special case of the general-length RC2-MA mechanism (see Section 2.4.8). Instead of taking a CK_RC2_MAC_GENERAL_PARAMS parameter, it takes a CK_RC2_PARAMS parameter, which only contains the effective number of bits in the RC2 search space. RC2-MAC produces and verifies 4-byte MACs.
Constraints on key types and the length of data are summarized in the following table:

Table 11, RC2-MAC: Key and Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	RC2
	Any
	4

	C_Verify
	RC2
	Any
	4

519
520

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC2 effective number of bits.

521
2.5 [bookmark: _bookmark26]
RC4

522

523
524
525
526
527
2.5.1 [bookmark: _bookmark27]
Definitions

This section defines the key type “CKK_RC4” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms
CKM_RC4_KEY_GEN CKM_RC4

528

529
530
531
532

2.5.2 [bookmark: _bookmark28]RC4 secret key objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold RC4 keys. The following table defines the RC4 secret key object attributes, in addition to the common attributes defined for this object class:

Table 12, RC4 Secret Key Object

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (1 to 256 bytes)

	CKA_VALUE_LEN2,3,6
	CK_ULONG
	Length in bytes of key value

533
534

535
536
537
538
539
540
541
542
543
544
545
546
547

Refer to [PKCS #11-Base] table 10 for footnotes
The following is a sample template for creating an RC4 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC4;
CK_UTF8CHAR label[] = “An RC4 secret key object”; CK_BYTE value[] = {…};
CK_BBOOL true – CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value}
};

548

549
550
551
552
553
554
555
556
557
558
2.5.3 [bookmark: _bookmark29]
RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4_KEY_GEN, is a key generation mechanism for RSA Security’s proprietary stream cipher RC4.
It does not have a parameter.
The mechanism generates RC4 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the RC4 key type (specifically, the flags indicating which functions the key supports) MAY be specified in the template for the key, o r else are assigned default initial values.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC4 key sizes, in bits.

559

560
561
562
563
564
2.5.4 [bookmark: _bookmark30]
RC4 mechanism

RC4, denoted CKM_RC4, is a mechanism for single- and multiple-part encryption and decryption based on RSA Security’s proprietary stream cipher RC4.
It does not have a parameter.
Constraints on key types and the length of input and output data are summarized in the following table:

Table 13, RC4: Key and Data Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	RC4
	Any
	Same as input length
	No final part

	C_Decrypt
	RC4
	Any
	Same as input length
	No final part

565
566

567

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC4 key sizes, in bits.

2.6 [bookmark: _bookmark31]RC5

568

569
570
571
572
573
574
575
576
577
578
579
2.6.1 [bookmark: _bookmark32]
Definitions

RC5 is a parameterizable block cipher patented by RSA Security. It has a variable wordsize, a variable keysize, and a variable number of rounds. The blocksize of RC5 is equal to twice its wordsize.
This section defines the key type “CKK_RC5” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_RC5_KEY_GEN CKM_RC5_ECB CKM_RC5_CBC CKM_RC5_MAC CKM_RC5_MAC_GENERAL CMK_RC5_CBC_PAD

580

581
582
583
584

2.6.2 [bookmark: _bookmark33]RC5 secret key objects

RC5 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC5) hold RC5 keys. The following table defines the RC5 secret key object attributes, in addition to the common attributes defined for this object class.

Table 14, RC5 Secret Key Object

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (0 to 255 bytes)

	CKA_VALUE_LEN2,3,6
	CK_ULONG
	Length in bytes of key value

585
586
587

588
589
590
591
592

Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating an RC5 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC5;
CK_UTF8CHAR label[] = “An RC5 secret key object”; CK_BYTE value[] = {…};
CK_BBOOL true = CK_TRUE;

593
594
595
596
597
598
599
600

CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

601
2.6.3 [bookmark: _bookmark34]
RC5 mechanism parameters

602

603
604

605
606
607
608

609

610
2.6.3.1
K_RC5_PARAMS; CK_RC5_PARAMS_PTR

CK_RC5_PARAMS provides the parameters to the CKM_RC5_ECB and CKM_RC5_MAC mechanisms. It is defined as follows:

typedef struct CK_RC5_PARAMS { CK_ULONG ulWordsize; CK_ULONG ulRounds;
} CK_RC5_PARAMS;

The fields of the structure have the following meanings:
ulWordsize	wordsize of RC5 cipher in bytes

611

ulRounds	number of rounds of RC5 encipherment

612

CK_RC5_PARAMS_PTR is a pointer to a CK_RC5_PARAMS.

613

614
615

616
617
618
619
620
621

622

623
2.6.3.2
K_RC5_CBC_PARAMS; CK_RC5_CBC_PARAMS_PTR

CK_RC5_CBC_PARAMS is a structure that provides the parameters to the CKM_RC5_CBC and
CKM_RC5_CBC_PAD mechanisms. It is defined as follows:

typedef struct CK_RC5_CBC_PARAMS { CK_ULONG ulWordsize;
CK_ULONG ulRounds; CK_BYTE_PTR pIv;
CK_ULONG ulIvLen;
} CK_RC5_CBC_PARAMS;

The fields of the structure have the following meanings:
ulwordSize	wordsize of RC5 cipher in bytes

624

ulRounds	number of rounds of RC5 encipherment

625

pIV	pointer to initialization vector (IV) for CBC encryption

626
627

ulIVLen	length of initialization vector (must be same as blocksize)

628

CK_RC5_CBC_PARAMS_PTR is a pointer to a CK_RC5_CBC_PARAMS.

629
630

631
632
2.6.3.3
K_RC5_MAC_GENERAL_PARAMS; CK_RC5_MAC_GENERAL_PARAMS_PTR

CK_RC5_MAC_GENERAL_PARAMS is a structure that provides the parameters to the CKM_RC5_MAC_GENERAL mechanism. It is defined as follows:

633
634
635
636
637

638

639

typedef struct CK_RC5_MAC_GENERAL_PARAMS { CK_ULONG ulWordsize;
CK_ULONG ulRounds; CK_ULONG ulMacLength;
} CK_RC5_MAC_GENERAL_PARAMS;

The fields of the structure have the following meanings:
ulwordSize	wordsize of RC5 cipher in bytes

640

ulRounds	number of rounds of RC5 encipherment

641

ulMacLength	length of the MAC produced, in bytes

642

CK_RC5_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_RC5_MAC_GENERAL_PARAMS.

643

644
645
646
647
648
649
650
651
652
653
2.6.4 [bookmark: _bookmark35]
RC5 key generation

The RC5 key generation mechanism, denoted CKM_RC5_KEY_GEN, is a key generation mechanism for RSA Security’s block cipher RC5.
It does not have a parameter.
The mechanism generates RC5 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the RC5 key type (specifically, the flags indicating which functions the key supports) MAY be specified in the template for the key, or else are assigned default initial values.
For this mechanism, the ulMinKeySIze and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in bytes.

654

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
2.6.5 [bookmark: _bookmark36]
RC5-ECB

RC5-ECB, denoted CKM_RC5_ECB, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC5 and electronic codebook mode as defined in FIPS PUB 81.
It has a parameter, CK_RC5_PARAMS, which indicates the wordsize and number of rounds of encryption to use.
This mechanism MAY wrap and unwrap any secret key. Of course, a particular token MAY not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with null bytes so that the resulting length is a multiple of the cipher blocksize (twice the wordsize). The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attributes of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:

Table 15, RC5-ECB Key and Data Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	RC5
	Multiple of blocksize
	Same as input length
	No final part

	C_Decrypt
	RC5
	Multiple of blocksize
	Same as input length
	No final part

	C_WrapKey
	RC5
	Any
	Input length rounded up to multiple of blocksize
	

	C_UnwrapKey
	RC5
	Multiple of blocksize
	Determined by type of key being unwrapped or CKA_VALUE_LEN
	

672
673

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in bytes.

674

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
2.6.6 [bookmark: _bookmark37]
RC5-CBC

RC5-CBC, denoted CKM_RC5_CBC, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC5 and cipher- block chaining mode as defined in FIPS PUB 81.
It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize and number of rounds of encryption to use, as well as the initialization vector for cipher block chaining mode.
This mechanism MAY wrap and unwrap any secret key. Of course, a particular token MAY not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to seven null bytes so that the resulting length is a multiple of eight. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute for the template, and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:

Table 16, RC5-CBC Key and Data Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	RC5
	Multiple of blocksize
	Same as input length
	No final part

	C_Decrypt
	RC5
	Multiple of blocksize
	Same as input length
	No final part

	C_WrapKey
	RC5
	Any
	Input length rounded up to multiple of blocksize
	

	C_UnwrapKey
	RC5
	Multiple of blocksize
	Determined by type of key being unwrapped or CKA_VALUE_LEN
	

692
693

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in bytes.

694

695
696
697
698
2.6.7 [bookmark: _bookmark38]
RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RC5_CBC_PAD, is a mechanism for single- and multiple- part encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s block cipher RC5; cipher block chaining mode as defined in FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.

699
700
701
702
703
704
705
706
707
708
709

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize and number of rounds of encryption to use, as well as the initialization vector for cipher block chaining mode.
The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the CKA_VALUE_LEN attribute.
In addition to being able to wrap an unwrap secret keys, this mechanism MAY wrap and unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys. The entries in the table below for data length constraints when wrapping and unwrapping keys do not apply to wrapping and unwrapping private keys.
Constraints on key types and the length of data are summarized in the following table:

Table 17, RC5-CBC with PKCS Padding; Key and Data Length

	Function
	Key type
	Input length
	Output length

	C_Encrypt
	RC5
	Any
	Input length rounded up to multiple of blocksize

	C_Decrypt
	RC5
	Multiple of blocksize
	Between 1 and blocksize bytes shorter than input length

	C_WrapKey
	RC5
	Any
	Input length rounded up to multiple of blocksize

	C_UnwrapKey
	RC5
	Multiple of blocksize
	Between 1 and blocksize bytes shorter than input length

710
711

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in bytes.

712

713
714
715
716
717
718
719
720
721
2.6.8 [bookmark: _bookmark39]
General-length RC5-MAC

General-length RC5-MAC, denoted CKM_RC5_MAC_GENERAL, is a mechanism for single- and multiple-part signatures and verification, based on RSA Security’s block cipher RC5 and data authentication as defined in FIPS PUB 113.
It has a parameter, a CK_RC5_MAC_GENERAL_PARAMS structure, which specifies the wordsize and number of rounds of encryption to use and the output length desired from the mechanism.
The output bytes from this mechanism are taken from the start of the final RC5 cipher block produced in the MACing process.
Constraints on key types and the length of data are summarized in the following table:

Table 18, General-length RC2-MAC: Key and Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	RC5
	Any
	0-blocksize, as specified in parameters

	C_Verify
	RC5
	Any
	0-blocksize, as specified in parameters

722
723

For this mechanism, the ulMinKeySize and ulMaxKeySIze fields of the CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in bytes.

724

725
726
727
728
729
2.6.9 [bookmark: _bookmark40]
RC5-MAC

RC5-MAC, denoted by CKM_RC5_MAC, is a special case of the general-length RC5-MAC mechanism. Instead of taking a CK_RC5_MAC_GENERAL_PARAMS parameter, it takes a CK_RC5_PARAMS parameter. RC5-MAC produces and verifies MACs half as large as the RC5 blocksize.
Constraints on key types and the length of data are summarized in the following table:

Table 19, RC5-MAC: Key and Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	RC5
	Any
	RC5 wordsize = [blocksize/2]

	C_Verify
	RC5
	Any
	RC5 wordsize = [blocksize/2]

 (
p
k
c
s
11-h
i
s
t
-
v
2
.
40-os
St
andard
s

T
ra
c
k

W
o
r
k

P
rodu
c
t
) (
1
4 A
pr
il

201
5
P
ag
e
30

o
f
 67
) (
Cop
y
r
ig
h
t

©
O
A
S
I
S

O
pe
n

2015
.

A
l
l

R
ig
h
t
s

R
e
s
er
v
ed
.
)
730
731

732

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in bytes.

2.7 [bookmark: _bookmark41]General block cipher

733

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
2.7.1 [bookmark: _bookmark42]
Definitions

For brevity’s sake, the mechanisms for the DES, CAST, CAST3, CAST128 (CAST5), IDEA and CDMF block ciphers are described together here. Each of these ciphers ha the following mechanisms, which are described in a templatized form.
This section defines the key types “CKK_DES”, “CKK_CAST”, “CKK_CAST3”, “CKK_CAST5” (deprecated in v2.11), “CKK_CAST128”, “CKK_IDEA” and “CKK_CDMF” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_DES_KEY_GEN CKM_DES_ECB CKM_DES_CBC CKM_DES_MAC CKM_DES_MAC_GENERAL CKM_DES_CBC_PAD CKM_CDMF_KEY_GEN CKM_CDMF_ECB CKM_CDMF_CBC CKM_CDMF_MAC CKM_CDMF_MAC_GENERAL CKM_CDMF_CBC_PAD CKM_DES_OFB64 CKM_DES_OFB8 CKM_DES_CFB64 CKM_DES_CFB8 CKM_CAST_KEY_GEN CKM_CAST_ECB CKM_CAST_CBC CKM_CAST_MAC CKM_CAST_MAC_GENERAL CKM_CAST_CBC_PAD CKM_CAST3_KEY_GEN CKM_CAST3_ECB CKM_CAST3_CBC CKM_CAST3_MAC CKM_CAST3_MAC_GENERAL

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

CKM_CAST3_CBC_PAD CKM_CAST5_KEY_GEN CKM_CAST128_KEY_GEN CKM_CAST5_ECB CKM_CAST128_ECB CKM_CAST5_CBC CKM_CAST128_CB C CKM_CAST5_MAC CKM_CAST128_MAC CKM_CAST5_MAC_GENERAL CKM_CAST128_MAC_GENERAL CKM_CAST5_CBC_PAD CKM_CAST128_CBC_PAD CKM_IDEA_KEY_GEN CKM_IDEA_ECB CKM_IDEA_MAC CKM_IDEA_MAC_GENERAL CKM_IDEA_CBC_PAD

786

787
788
789
790

2.7.2 [bookmark: _bookmark43]DES secret key objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold single-length DES keys. The following table defines the DES secret key object attributes, in addition to the common attributes defined for this object class:

Table 20, DES Secret Key Object

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (8 bytes long)

791
792
793
794

795
796
797
798
799
800
801
802
803
804
805
806
807

808
809
810

Refer to [PKCS #11-Base] table 10 for footnotes
DES keys MUST have their parity bits properly set as described in FIPS PUB 46-3. Attempting to create or unwrap a DES key with incorrect parity MUST return an error.
The following is a sample template for creating a DES secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_UTF8CHAR label[] = “A DES secret key object”; CK_BYTE value[8] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value}
};

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with the key type of the secret key object.

811

812
813
814
815
2.7.3 [bookmark: _bookmark44]
CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST) hold CAST keys. The following table defines the CAST secret key object attributes, in addition to the common attributes defined for this object class:

Table 21, CAST Secret Key Object Attributes

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (1 to 8 bytes)

	CKA_VALUE_LEN2,3,6
	CK_ULONG
	Length in bytes of key value

816
817
818

819
820
821
822
823
824
825
826
827
828
829
830
831

Refer to [PKCS #11-Base] table 10 for footnotes

The following is a sample template for creating a CAST secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST;
CK_UTF8CHAR label[] = “A CAST secret key object”; CK_BYTE value[] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

832

833
834
835
836
2.7.4 [bookmark: _bookmark45]
CAST3 secret key objects

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3) hold CAST3 keys. The following table defines the CAST3 secret key object attributes, in addition to the common attributes defines for this object class:

Table 22, CAST3 Secret Key Object Attributes

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (1 to 8 bytes)

	CKA_VALUE_LEN2,3,6
	CK_ULONG
	Length in bytes of key value

837
838

839
840
841
842
843
844
845
846
847
848
849
850
851

Refer to [PKCS #11-Base] table 10 for footnotes
The following is a sample template for creating a CAST3 secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST3;
CK_UTF8CHAR label[] = “A CAST3 secret key object”; CK_BYTE value[] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

852

853
854
855
856
2.7.5 [bookmark: _bookmark46]
CAST128 (CAST5) secret key objects

CAST128 (also known as CAST5) secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST128 or CKK_CAST5) hold CAST128 keys. The following table defines the CAST128 secret key object attributes, in addition to the common attributes defines for this object class:

Table 23, CAST128 (CAST5) Secret Key Object Attributes

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (1 to 16 bytes)

	CKA_VALUE_LEN2,3,6
	CK_ULONG
	Length in bytes of key value

857
858

859
860
861
862
863
864
865
866
867
868
869
870
871

872

Refer to [PKCS #11-Base] table 10 for footnotes
The following is a sample template for creating a CAST128 (CAST5) secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY; CK_KEY_TYPE keyType = CKK_CAST128;
CK_UTF8CHAR label[] = “A CAST128 secret key object”; CK_BYTE value[] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

873

874
875
876
2.7.6 [bookmark: _bookmark47]
IDEA secret key objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA) hold IDEA keys. The following table defines the IDEA secret key object attributes, in addition to the common attributes defines for this object class:

Table 24, IDEA Secret Key Object

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (16 bytes long)

877
878

879
880
881
882
883
884
885
886
887
888
889
890
891

892

Refer to [PKCS #11-Base] table 10 for footnotes
The following is a sample template for creating an IDEA secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_IDEA;
CK_UTF8CHAR label[] = “An IDEA secret key object”; CK_BYTE value[16] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

893

894
895
896
2.7.7 [bookmark: _bookmark48]
CDMF secret key objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF) hold CDMF keys. The following table defines the CDMF secret key object attributes, in addition to the common attributes defines for this object class:

Table 25, CDMF Secret Key Object

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (8 bytes long)

897
898
899
900
901

902
903
904
905
906
907
908
909
910
911
912
913
914

Refer to [PKCS #11-Base] table 10 for footnotes
CDMF keys MUST have their parity bits properly set in exactly the same fashion described for DES keys in FIPS PUB 46-3. Attempting to create or unwrap a CDMF key with incorrect parity MUST return an error.
The following is a sample template for creating a CDMF secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CDMF;
CK_UTF8CHAR label[] = “A CDMF secret key object”; CK_BYTE value[8] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

915
2.7.8 [bookmark: _bookmark49]
General block cipher mechanism parameters

916

917
918
919
920
921
922

923
924

925

2.7.8.1 CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS_PTR

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length MACing mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CAST128 (CAST5), IDEA, CDMF and AES ciphers. It also provides the parameters to the general-length HMACing mechanisms (i.e., MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512, RIPEMD-128 and RIPEMD-160) and the two SSL 3.0 MACing mechanisms, (i.e., MD5 and SHA-1). It holds the length of the MAC that these mechanisms produce. It is defined as follows:

typedef CK_ULONG CK_MAC_GENERAL_PARAMS;

CK_MAC_GENERAL_PARAMS_PTR is a pointer to a CK_MAC_GENERAL_PARAMS.

926

927
928
929
930
931
932
933
934
935
2.7.9 [bookmark: _bookmark50]
General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted by
CKM_<NAME>_KEY_GEN.
This mechanism does not have a parameter.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the key type (specifically, the flags indicating which functions the key supports) MAY be specified in the template for the key, or else are assigned default initial values.
When DES keys or CDMF keys are generated, their parity bits are set properly, as specified in FIPS PUB 46-3. Similarly, when a triple-DES key is generated, each of the DES keys comprising it has its parity bits set properly.

936
937
938
939
940
941
942
943
944
945

When DES or CDMF keys are generated, it is token-dependent whether or not it is possible for “weak” or “semi-weak” keys to be generated. Similarly, when triple-DES keys are generated, it is token-dependent whether or not it is possible for any of the component DES keys to be “weak” or “semi-weak” keys.
When CAST, CAST3, or CAST128 (CAST5) keys are generated, the template for the secret key must specify a CKA_VALUE_LEN attribute.
For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure MAY be used. The CAST, CAST3, and CAST128 (CAST5) ciphers have variable key sizes, and so for the key generation mechanisms for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA and CDMF ciphers, these fields and not used.

946

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
2.7.10 [bookmark: _bookmark51]
General block cipher ECB

Cipher <NAME> has an electronic codebook mechanism, “<NAME>-ECB”, denoted CKM_<NAME>_ECB. It is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping with <NAME>.
It does not have a parameter.
This mechanism MAY wrap and unwrap any secret key. Of course, a particular token MAY not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with null bytes so that the resulting length is a multiple of <NAME>’s blocksize. The output data is the same length as the padded input data. It does not wrap the key type, key length or any other information about the key; the application must convey these separately.
For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key must be specified in the template.
Constraints on key types and the length of data are summarized in the following table:

Table 26, General Block Cipher ECB: Key and Data Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	<NAME>
	Multiple of blocksize
	Same as input length
	No final part

	C_Decrypt
	<NAME>
	Multiple of blocksize
	Same as input length
	No final part

	C_WrapKey
	<NAME>
	Any
	Input length rounded up to multiple of blocksize
	

	C_UnwrapKey
	<NAME>
	Any
	Determined by type of key being unwrapped or CKA_VALUE_LEN
	

963
964
965
966
967

For this mechanism, the ulMinKeySize and ulMaxKeySIze fields of the CK_MECHANISM_INFO structure MAY be used. The CAST, CAST3, and CAST128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA and CDMF ciphers, these fields are not used.

968

969
970
971
2.7.11 [bookmark: _bookmark52]
General block cipher CBC

Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC”, denoted CKM_<NAME>_CBC. It is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping with <NAME>.

972
973
974
975

It has a parameter, an initialization vector for cipher block chaining mode. The initialization vector has the same length as <NAME>’s blocksize.
Constraints on key types and the length of data are summarized in the following table:

Table 27, General Block Cipher CBC; Key and Data Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	<NAME>
	Multiple of blocksize
	Same as input length
	No final part

	C_Decrypt
	<NAME>
	Multiple of blocksize
	Same as input length
	No final part

	C_WrapKey
	<NAME>
	Any
	Input length rounded up to multiple of blocksize
	

	C_UnwrapKey
	<NAME>
	Any
	Determined by type of key being unwrapped or CKA_VALUE_LEN
	

976
977
978
979
980

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure MAY be used. The CAST, CAST3, and CAST128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA, and CDMF ciphers, these fields are not used.

981

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
2.7.12 [bookmark: _bookmark53]
General block cipher CBC with PCKS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-CBC with PKCS padding”, denoted CKM_<NAME>_CBC_PAD. It is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping with <NAME>. All ciphertext is padded with PKCS padding.
It has a parameter, an initialization vector for cipher block chaining mode. The initialization vector has the same length as <NAME>’s blocksize.
The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism MAY wrap and unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys. The entries in the table below for data length constraints when wrapping and unwrapping keys to not apply to wrapping and unwrapping private keys.
Constraints on key types and the length of data are summarized in the following table:

Table 28, General Block Cipher CBC with PKCS Padding: Key and Data Length

	Function
	Key type
	Input length
	Output length

	C_Encrypt
	<NAME>
	Any
	Input length rounded up to multiple of blocksize

	C_Decrypt
	<NAME>
	Multiple of blocksize
	Between 1 and blocksize bytes shorter than input length

	C_WrapKey
	<NAME>
	Any
	Input length rounded up to multiple of blocksize

	C_UnwrapKey
	<NAME>
	Multiple of
	Between 1 and blocksize bytes shorter than input

	
	
	blocksize
	length

998
999
1000
1001
1002

For this mechanism, the ulMinKeySIze and ulMaxKeySize fields of the CK_MECHANISM_INFO structure MAY be used. The CAST, CAST3 and CAST128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA, and CDMF ciphers, these fields are not used.

1003

1004
1005
1006
1007
1008
1009
1010
1011
1012
2.7.13 [bookmark: _bookmark54]
General-length general block cipher MAC

Cipher <NAME> has a general-length MACing mode, “General-length <NAME>-MAC”, denoted CKM_<NAME>_MAC_GENERAL. It is a mechanism for single-and multiple-part signatures and verification, based on the <NAME> encryption algorithm and data authentication as defined in FIPS PUB 113.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the size of the output.
The output bytes from this mechanism are taken from the start of the final cipher block produced in the MACing process.
Constraints on key types and the length of input and output data are summarized in the following table:

Table 29, General-length General Block Cipher MAC: Key and Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	<NAME>
	Any
	0-blocksize, depending on parameters

	C_Verify
	<NAME>
	Any
	0-blocksize, depending on parameters

1013
1014
1015
1016
1017

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure MAY be used. The CAST, CAST3, and CASt128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA and CDMF ciphers, these fields are not used.

1018

1019
1020
1021
1022
1023
1024
2.7.14 [bookmark: _bookmark55]
General block cipher MAC

Cipher <NAME> has a MACing mechanism, “<NAME>-MAC”, denoted CKM_<NAME>_MAC. This mechanism is a special case of the CKM_<NAME>_MAC_GENERAL mechanism described above. It produces an output of size half as large as <NAME>’s blocksize.
This mechanism has no parameters.
Constraints on key types and the length of data are summarized in the following table:

Table 30, General Block cipher MAC: Key and Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	<NAME>
	Any
	[blocksize/2]

	C_Verify
	<NAME>
	Any
	[blocksize/2]

1025
1026
1027
1028
1029

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure MAY be used. The CAST, CAST3, and CASt128 (CAST5) ciphers have variable key sizes, and so for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA and CDMF ciphers, these fields are not used.

1030
2.8 [bookmark: _bookmark56]
SKIPJACK

1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
2.8.1 [bookmark: _bookmark57]
Definitions

This section defines the key type “CKK_SKIPJACK” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_SKIPJACK_KEY_GEN CKM_SKIPJACK_ECB64 CKM_SKIPJACK_CBC64 CKM_SKIPJACK_OFB64 CKM_SKIPJACK_CFB64 CKM_SKIPJACK_CFB32 CKM_SKIPJACK_CFB16 CKM_SKIPJACK_CFB8 CKM_SKIPJACK_WRAP CKM_SKIPJACK_PRIVATE_WRAP CKM_SKIPJACK_RELAYX

1046

1047
1048
1049
1050

2.8.2 [bookmark: _bookmark58]SKIPJACK secret key objects

SKIPJACK secret key objects (object class CKO_SECRET_KEY, key type CKK_SKIPJACK) holds a single-length MEK or a TEK. The following table defines the SKIPJACK secret object attributes, in addition to the common attributes defined for this object class:

Table 31, SKIPJACK Secret Key Object

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (12 bytes long)

1051
1052
1053
1054
1055
1056
1057

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

1071

Refer to [PKCS #11-Base] table 10 for footnotes

SKIPJACK keys have 16 checksum bits, and these bits must be properly set. Attempting to create or unwrap a SKIPJACK key with incorrect checksum bits MUST return an error.
It is not clear that any tokens exist (or ever will exist) which permit an application to create a SKIPJACK key with a specified value. Nonetheless, we provide templates for doing so.
The following is a sample template for creating a SKIPJACK MEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY; CK_KEY_TYPE keyType = CKK_SKIPJACK;
CK_UTF8CHAR label[] = “A SKIPJACK MEK secret key object”; CK_BYTE value[12] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

The following is a sample template for creating a SKIPJACK TEK secret key object:

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

CK_OBJECT_CLASS class = CKO_SECRET_KEY; CK_KEY_TYPE keyType = CKK_SKIPJACK;
CK_UTF8CHAR label[] = “A SKIPJACK TEK secret key object”; CK_BYTE value[12] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_WRAP, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

1086
2.8.3 [bookmark: _bookmark59]
SKIPJACK Mechanism parameters

1087
1088

1089
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

1104

1105
2.8.3.1
K_SKIPJACK_PRIVATE_WRAP_PARAMS; CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR

CK_SKIPJACK_PRIVATE_WRAP_PARAMS is a structure that provides the parameters to the
CKM_SKIPJACK_PRIVATE_WRAP mechanism. It is defined as follows:

typedef struct	CK_SKIPJACK_PRIVATE_WRAP_PARAMS { CK_ULONG ulPasswordLen;
CK_BYTE_PTR pPassword; CK_ULONG ulPublicDataLen; CK_BYTE_PTR pPublicData; CK_ULONG ulPandGLen; CK_ULONG ulQLen;
CK_ULONG ulRandomLen; CK_BYTE_PTR pRandomA; CK_BYTE_PTR pPrimeP; CK_BYTE_PTR pBaseG; CK_BYTE_PTR pSubprimeQ;
} CK_SKIPJACK_PRIVATE_WRAP_PARAMS;

The fields of the structure have the following meanings:
ulPasswordLen	length of the password

1106
1107

pPassword	pointer to the buffer which contains the user-supplied password

1108

ulPublicDataLen	other party’s key exchange public key size

1109

pPublicData	pointer to other party’s key exchange public key value

1110

ulPandGLen	length of prime and base values

1111

ulQLen	length of subprime value

1112

ulRandomLen	size of random Ra, in bytes

1113

pPrimeP	pointer to Prime, p, value

1114

pBaseG	pointer to Base, b, value

1115

pSubprimeQ	pointer to Subprime, q, value

1116
1117

CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR is a pointer to a
CK_PRIVATE_WRAP_PARAMS.

1118
1119

1120
1121

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

1138

1139
2.8.3.2
K_SKIPJACK_RELAYX_PARAMS; CK_SKIPJACK_RELAYX_PARAMS_PTR

CK_SKIPJACK_RELAYX_PARAMS is a structure that provides the parameters to the
CKM_SKIPJACK_RELAYX mechanism. It is defined as follows:

typedef struct CK_SKIPJACK_RELAYX_PARAMS { CK_ULONG ulOldWrappedXLen;
CK_BYTE_PTR pOldWrappedX; CK_ULONG ulOldPasswordLen; CK_BYTE_PTR pOldPassword; CK_ULONG ulOldPublicDataLen; CK_BYTE_PTR pOldPublicData; CK_ULONG ulOldRandomLen; CK_BYTE_PTR pOldRandomA; CK_ULONG ulNewPasswordLen; CK_BYTE_PTR pNewPassword; CK_ULONG ulNewPublicDataLen; CK_BYTE_PTR pNewPublicData; CK_ULONG ulNewRandomLen; CK_BYTE_PTR pNewRandomA;
} CK_SKIPJACK_RELAYX_PARAMS;

The fields of the structure have the following meanings:
ulOldWrappedLen	length of old wrapped key in bytes

1140

pOldWrappedX	pointer to old wrapper key

1141

ulOldPasswordLen	length of the old password

1142
1143

pOldPassword	pointer to the buffer which contains the old user-supplied password

1144

ulOldPublicDataLen	old key exchange public key size

1145

pOldPublicData	pointer to old key exchange public key value

1146

ulOldRandomLen	size of old random Ra in bytes

1147

pOldRandomA	pointer to old Ra data

1148

ulNewPasswordLen	length of the new password

1149
1150

pNewPassword	pointer to the buffer which contains the new user- supplied password

1151

ulNewPublicDataLen	new key exchange public key size

1152

pNewPublicData	pointer to new key exchange public key value

1153

ulNewRandomLen	size of new random Ra in bytes

1154

pNewRandomA	pointer to new Ra data

1155

CK_SKIPJACK_RELAYX_PARAMS_PTR is a pointer to a CK_SKIPJACK_RELAYX_PARAMS.

1156

1157
1158
1159
1160
1161
2.8.4 [bookmark: _bookmark60]
SKIPJACK key generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, is a key generation mechanism for SKIPJACK. The output of this mechanism is called a Message Encryption Key (MEK).
It does not have a parameter.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key.

1162

1163
1164
1165
1166
1167
1168
1169
1170
2.8.5 [bookmark: _bookmark61]
SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK_ECB64, is a mechanism for single- and multiple-part encryption and decryption with SKIPJACK in 64-bit electronic codebook mode as defined in FIPS PUB 185.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application cant specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 32, SKIPJACK-ECB64: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	SKIPJACK
	Multiple of 8
	Same as input length
	No final part

	C_Decrypt
	SKIPJACK
	Multiple of 8
	Same as input length
	No final part

1171

1172
1173
1174
1175
1176
1177
1178
2.8.6 [bookmark: _bookmark62]
SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK_CBC64, is a mechanism for single- and multiple-part encryption and decryption with SKIPJACK in 64-bit output feedback mode as defined in FIPS PUB 185.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 33, SKIPJACK-CBC64: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	SKIPJACK
	Multiple of 8
	Same as input length
	No final part

	C_Decrypt
	SKIPJACK
	Multiple of 8
	Same as input length
	No final part

1179

1180
1181
1182
1183
1184
2.8.7 [bookmark: _bookmark63]
SKIPJACK-OFB64

SKIPJACK-OFB64, denoted CKM_SKIPJACK_OFB64, is a mechanism for single- and multiple-part encryption and decryption with SKIPJACK in 64-bit output feedback mode as defined in FIPS PUB 185.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.

1185
1186

Constraints on key types and the length of data are summarized in the following table:

Table 34, SKIPJACK-OFB64: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	SKIPJACK
	Multiple of 8
	Same as input length
	No final part

	C_Decrypt
	SKIPJACK
	Multiple of 8
	Same as input length
	No final part

1187

1188
1189
1190
1191
1192
1193
1194
2.8.8 [bookmark: _bookmark64]
SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM_SKIPJACK_CFB64, is a mechanism for single- and multiple-part encryption and decryption with SKIPJACK in 64-bit cipher feedback mode as defined in FIPS PUB 185.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 35, SKIPJACK-CFB64: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	SKIPJACK
	Multiple of 8
	Same as input length
	No final part

	C_Decrypt
	SKIPJACK
	Multiple of 8
	Same as input length
	No final part

1195

1196
1197
1198
1199
1200
1201
1202
2.8.9 [bookmark: _bookmark65]
SKIPJACK-CFB32

SKIPJACK-CFB32, denoted CKM_SKIPJACK_CFB32, is a mechanism for single- and multiple-part encryption and decryption with SKIPJACK in 32-bit cipher feedback mode as defined in FIPS PUB 185.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 36, SKIPJACK-CFB32: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	SKIPJACK
	Multiple of 4
	Same as input length
	No final part

	C_Decrypt
	SKIPJACK
	Multiple of 4
	Same as input length
	No final part

1203

1204
1205
1206
1207
1208
1209
1210
2.8.10 [bookmark: _bookmark66]
SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM_SKIPJACK_CFB16, is a mechanism for single- and multiple-part encryption and decryption with SKIPJACK in 16-bit cipher feedback mode as defined in FIPS PUB 185.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 37, SKIPJACK-CFB16: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	SKIPJACK
	Multiple of 4
	Same as input length
	No final part

	C_Decrypt
	SKIPJACK
	Multiple of 4
	Same as input length
	No final part

1211

1212
1213
1214
1215
1216
1217
1218
2.8.11 [bookmark: _bookmark67]
SKIPJACK-CFB8

SKIPJACK-CFB8, denoted CKM_SKIPJACK_CFB8, is a mechanism for single- and multiple-part encryption and decryption with SKIPJACK in 8-bit cipher feedback mode as defined in FIPS PUB 185.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 38, SKIPJACK-CFB8: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	SKIPJACK
	Multiple of 4
	Same as input length
	No final part

	C_Decrypt
	SKIPJACK
	Multiple of 4
	Same as input length
	No final part

1219

1220
1221
1222
2.8.12 [bookmark: _bookmark68]
SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to wrap and unwrap a secret key (MEK). It MAY wrap or unwrap SKIPJACK, BATON, and JUNIPER keys.
It does not have a parameter.

1223

1224
1225
1226
2.8.13 [bookmark: _bookmark69]
SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted CKM_SKIPJACK_PRIVATE_WRAP, is used to wrap and unwrap a private key. It MAY wrap KEA and DSA private keys.
It has a parameter, a CK_SKIPJACK_PRIVATE_WRAP_PARAMS structure.

1227

1228
1229
1230
1231
1232
1233
1234
1235
1236

1237
2.8.14 [bookmark: _bookmark70]
SKIPJACK-RELAYX

The SKIPJACK-RELAYX mechanism, denoted CKM_SKIPJACK_RELAYX, is used with the C_WrapKey function to “change the wrapping” on a private key which was wrapped with the SKIPJACK-PRIVATE- WRAP mechanism (See Section 2.8.13).
It has a parameter, a CK_SKIPJACK_RELAYX_PARAMS structure.
Although the SKIPJACK-RELAYX mechanism is used with C_WrapKey, it differs from other key- wrapping mechanisms. Other key-wrapping mechanisms take a key handle as one of the arguments to C_WrapKey; however for the SKIPJACK_RELAYX mechanism, the [always invalid] value 0 should be passed as the key handle for C_WrapKey, and the already-wrapped key should be passed in as part of the CK_SKIPJACK_RELAYX_PARAMS structure.

2.9 [bookmark: _bookmark71]BATON

1238

1239
1240
1241
1242
1243
1244
2.9.1 [bookmark: _bookmark72]
Definitions

This section defines the key type “CKK_BATON” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_BATON_KEY_GEN CKM_BATON_ECB128 CKM_BATON_ECB96

1245
1246
1247
1248

CKM_BATON_CBC128 CKM_BATON_COUNTER CKM_BATON_SHUFFLE CKM_BATON_WRAP

1249

1250
1251
1252
1253

2.9.2 [bookmark: _bookmark73]BATON secret key objects

BATON secret key objects (object class CKO_SECRET_KEY, key type CKK_BATON) hold single-length BATON keys. The following table defines the BATON secret key object attributes, in addition to the common attributes defined for this object class:

Table 39, BATON Secret Key Object

1254
1255
1256
1257
1258
1259
1260

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273

1274

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

Attribute	Data type	Meaning CKA_VALUE1,4,6,7	Byte array	Key value (40 bytes long) Refer to [PKCS #11-Base] table 10 for footnotes

BATON keys have 160 checksum bits, and these bits must be properly set. Attempting to create or unwrap a BATON key with incorrect checksum bits MUST return an error.
It is not clear that any tokens exist (or will ever exist) which permit an application to create a BATON key with a specified value. Nonetheless, we provide templates for doing so.
The following is a sample template for creating a BATON MEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON;
CK_UTF8CHAR label[] = “A BATON MEK secret key object”; CK_BYTE value[40] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

The following is a sample template for creating a BATON TEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_BATON;
CK_UTF8CHAR label[] = “A BATON TEK secret key object”; CK_BYTE value[40] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_WRAP, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

1289

1290
1291
2.9.3 [bookmark: _bookmark74]
BATON key generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key generation mechanism for BATON. The output of this mechanism is called a Message Encryption Key (MEK).

1292
1293
1294

It does not have a parameter.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key.

1295

1296
1297
1298
1299
1300
1301
1302
2.9.4 [bookmark: _bookmark75]
BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for single- and multiple-part encryption and decryption with BATON in 128-bit electronic codebook mode.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 40, BATON-ECB128: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	BATON
	Multiple of 16
	Same as input length
	No final part

	C_Decrypt
	BATON
	Multiple of 16
	Same as input length
	No final part

1303

1304
1305
1306
1307
1308
1309
1310
2.9.5 [bookmark: _bookmark76]
BATON-ECB96

BATON-ECB96, denoted CKM_BATON_ECB96, is a mechanism for single- and multiple-part encryption and decryption with BATON in 96-bit electronic codebook mode.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 41, BATON-ECB96: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	BATON
	Multiple of 12
	Same as input length
	No final part

	C_Decrypt
	BATON
	Multiple of 12
	Same as input length
	No final part

1311

1312
1313
1314
1315
1316
1317
1318
2.9.6 [bookmark: _bookmark77]
BATON-CBC128

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanism for single- and multiple-part encryption and decryption with BATON in 128-bit cipher-block chaining mode.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 42, BATON-CBC128

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	BATON
	Multiple of 16
	Same as input length
	No final part

	C_Decrypt
	BATON
	Multiple of 16
	Same as input length
	No final part

1319

1320
1321
1322
1323
1324
1325
1326
2.9.7 [bookmark: _bookmark78]
BATON-COUNTER

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechanism for single- and multiple-part encryption and decryption with BATON in counter mode.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 43, BATON-COUNTER: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	BATON
	Multiple of 16
	Same as input length
	No final part

	C_Decrypt
	BATON
	Multiple of 16
	Same as input length
	No final part

1327

1328
1329
1330
1331
1332
1333
1334
2.9.8 [bookmark: _bookmark79]
BATON-SHUFFLE

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanism for single- and multiple-part encryption and decryption with BATON in shuffle mode.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table:

Table 44, BATON-SHUFFLE: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	BATON
	Multiple of 16
	Same as input length
	No final part

	C_Decrypt
	BATON
	Multiple of 16
	Same as input length
	No final part

1335

1336
1337
1338
1339
1340

1341
2.9.9 [bookmark: _bookmark80]
BATON WRAP

The BATON wrap and unwrap mechanism, denoted CKM_BATON_WRAP, is a function used to wrap and unwrap a secret key (MEK). It MAY wrap and unwrap SKIPJACK, BATON and JUNIPER keys.
It has no parameters.
When used to unwrap a key, this mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and
CKA_VALUE attributes to it.

2.10 [bookmark: _bookmark81]JUNIPER

1342

1343
1344
1345
1346
1347
1348
1349
1350
2.10.1 [bookmark: _bookmark82]
Definitions

This section defines the key type “CKK_JUNIPER” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.
Mechanisms:
CKM_JUNIPER_KEY_GEN CKM_JUNIPER_ECB128 CKM_JUNIPER_CBC128 CKM_JUNIPER_COUNTER CKM_JUNIPER_SHUFFLE

1351

CKM_JUNIPER_WRAP

1352

1353
1354
1355
1356
2.10.2 [bookmark: _bookmark83]
JUNIPER secret key objects

JUNIPER secret key objects (object class CKO_SECRET_KEY, key type CKK_JUNIPER) hold single- length JUNIPER keys. The following table defines the BATON secret key object attributes, in addition to the common attributes defined for this object class:

Table 45, JUNIPER Secret Key Object

1357
1358
1359
1360
1361
1362
1363

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376

1377

1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

Attribute	Data type	Meaning CKA_VALUE1,4,6,7	Byte array	Key value (40 bytes long) Refer to [PKCS #11-Base] table 10 for footnotes

JUNIPER keys have 160 checksum bits, and these bits must be properly set. Attempting to create or unwrap a BATON key with incorrect checksum bits MUST return an error.
It is not clear that any tokens exist (or will ever exist) which permit an application to create a BATON key with a specified value. Nonetheless, we provide templates for doing so.
The following is a sample template for creating a JUNIPER MEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY; CK_KEY_TYPE keyType = CKK_JUNIPER;
CK_UTF8CHAR label[] = “A JUNIPER MEK secret key object”; CK_BYTE value[40] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

The following is a sample template for creating a JUNIPER TEK secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY; CK_KEY_TYPE keyType = CKK_JUNIPER;
CK_UTF8CHAR label[] = “A JUNIPER TEK secret key object”; CK_BYTE value[40] = {…};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
{CKA_CLASS, &class, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{CKA_LABEL, label, sizeof(label)-1},
{CKA_ENCRYPT, &true, sizeof(true)},
{CKA_WRAP, &true, sizeof(true)},
{CKA_VALUE, value, sizeof(value)}
};

1392

1393
1394
1395
1396
1397
2.10.3 [bookmark: _bookmark84]
JUNIPER key generation

The JUNIPER key generation mechanism, denoted CKM_JUNIPER_KEY_GEN, is a key generation mechanism for JUNIPER. The output of this mechanism is called a Message Encryption Key (MEK).
It does not have a parameter.
The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key.

1398

1399
1400
1401
1402
1403
1404
1405
1406
2.10.4 [bookmark: _bookmark85]
JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM_JUNIPER_ECB128, is a mechanism for single- and multiple-part encryption and decryption with JUNIPER in 128-bit electronic codebook mode.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table. For encryption and decryption, the input and output data (parts) MAY begin at the same location in memory.

Table 46, JUNIPER-ECB128: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	JUNIPER
	Multiple of 16
	Same as input length
	No final part

	C_Decrypt
	JUNIPER
	Multiple of 16
	Same as input length
	No final part

1407

1408
1409
1410
1411
1412
1413
1414
1415
2.10.5 [bookmark: _bookmark86]
JUNIPER-CBC128

JUNIPER-CBC128, denoted CKM_JUNIPER_CBC128, is a mechanism for single- and multiple-part encryption and decryption with JUNIPER in 128-bit cipher block chaining mode.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table. For encryption and decryption, the input and output data (parts) MAY begin at the same location in memory.

Table 47, JUNIPER-CBC128: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	JUNIPER
	Multiple of 16
	Same as input length
	No final part

	C_Decrypt
	JUNIPER
	Multiple of 16
	Same as input length
	No final part

1416

1417
1418
1419
1420
1421
1422
1423
1424
2.10.6 [bookmark: _bookmark87]
JUNIPER-COUNTER

JUNIPER-COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechanism for single- and multiple- part encryption and decryption with JUNIPER in counter mode.
It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table. For encryption and decryption, the input and output data (parts) MAY begin at the same location in memory.

Table 48, JUNIPER-COUNTER: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	JUNIPER
	Multiple of 16
	Same as input length
	No final part

	C_Decrypt
	JUNIPER
	Multiple of 16
	Same as input length
	No final part

1425

1426
1427
2.10.7 [bookmark: _bookmark88]
JUNIPER-SHUFFLE

JUNIPER-SHUFFLE, denoted CKM_JUNIPER_SHUFFLE, is a mechanism for single- and multiple-part encryption and decryption with JUNIPER in shuffle mode.

1428
1429
1430
1431
1432
1433

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to some value generated by the token – in other words, the application MAY NOT specify a particular IV when encrypting. It MAY, of course, specify a particular IV when decrypting.
Constraints on key types and the length of data are summarized in the following table. For encryption and decryption, the input and output data (parts) MAY begin at the same location in memory.

Table 49, JUNIPER-SHUFFLE: Data and Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	JUNIPER
	Multiple of 16
	Same as input length
	No final part

	C_Decrypt
	JUNIPER
	Multiple of 16
	Same as input length
	No final part

1434

1435
1436
1437
1438
1439

1440
2.10.8 [bookmark: _bookmark89]
JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a function used to wrap and unwrap an MEK. It MAY wrap or unwrap SKIPJACK, BATON and JUNIPER keys.
It has no parameters.
When used to unwrap a key, this mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and
CKA_VALUE attributes to it.

2.11 [bookmark: _bookmark90]MD2

1441

1442
1443
1444
1445
1446
2.11.1 [bookmark: _bookmark91]
Definitions

Mechanisms:
CKM_MD2 CKM_MD2_HMAC
CKM_MD2_HMAC_GENERAL CKM_MD2_KEY_DERIVATION

1447

1448
1449
1450
1451
1452

2.11.2 [bookmark: _bookmark92]MD2 digest

The MD2 mechanism, denoted CKM_MD2, is a mechanism for message digesting, following the MD2 message-digest algorithm defined in RFC 6149.
It does not have a parameter.
Constraints on the length of data are summarized in the following table:

Table 50, MD2: Data Length

Function	Data length	Digest Length
C_Digest	Any	16

1453

1454
1455
1456
1457
1458
1459

2.11.3 [bookmark: _bookmark93]General-length MD2-HMAC

The general-length MD2-HMAC mechanism, denoted CKM_MD2_HMAC_GENERAL, is a mechanism for signatures and verification. It uses the HMAC construction, based on the MD2 hash function. The keys it uses are generic secret keys.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 0-16 (the output size of MD2 is 16 bytes). Signatures (MACs) produced by this mechanism MUST be taken from the start of the full 16-byte HMAC output.

1460

Table 51, General-length MD2-HMAC: Key and Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	Generic secret
	Any
	0-16, depending on parameters

	C_Verify
	Generic secret
	Any
	0-16, depending on parameters

1461

1462
1463
1464
2.11.4 [bookmark: _bookmark94]
MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2_HMAC, is a special case of the general-length MD2- HMAC mechanism in Section 2.11.3.
It has no parameter, and produces an output of length 16.

1465

1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

1494
2.11.5 [bookmark: _bookmark95]
MD2 key derivation

MD2 key derivation, denoted CKM_MD2_KEY_DERIVATION, is a mechanism which provides the capability of deriving a secret key by digesting the value of another secret key with MD2.
The value of the base key is digested once, and the result is used to make the value of the derived secret key.
· If no length or key type is provided in the template, then the key produced by this mechanism MUST be a generic secret key. Its length MUST be 16 bytes (the output size of MD2)..
· If no key type is provided in the template, but a length is, then the key produced by this mechanism MUST be a generic secret key of the specified length.
· If no length was provided in the template, but a key type is, then that key type must have a well- defined length. If it does, then the key produced by this mechanism MUST be of the type specified in the template. If it doesn’t, an error MUST be returned.
· If both a key type and a length are provided in the template, the length must be compatible with that key type. The key produced by this mechanism MUST be of the specified type and length.
If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key MUST be set properly.
If the requested type of key requires more than 16 bytes, such as DES2, an error is generated. This mechanism has the following rules about key sensitivity and extractability:
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key MAY both be specified to be either CK_TRUE or CK_FALSE. If omitted, these attributes each take on
some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key MUST as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key MUST, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.

2.12 [bookmark: _bookmark96]MD5

1495

1496
1497
1498
2.12.1 [bookmark: _bookmark97]
Definitions

Mechanisms:
CKM_MD5 CKM_MD5_HMAC

1499
1500

CKM_MD5_HMAC_GENERAL CKM_MD5_KEY_DERIVATION

1501

1502
1503
1504
1505
1506
1507

2.12.2 [bookmark: _bookmark98]MD5 Digest

The MD5 mechanism, denoted CKM_MD5, is a mechanism for message digesting, following the MD5 message-digest algorithm defined in RFC 1321.
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table. For single-part digesting, the data and the digest MAY begin at the same location in memory.

Table 52, MD5: Data Length

Function	Data length	Digest length
C_Digest	Any	16

1508

1509
1510
1511
1512
1513
1514
1515

2.12.3 [bookmark: _bookmark99]General-length MD5-HMAC

The general-length MD5-HMAC mechanism, denoted CKM_MD5_HMAC_GENERAL, is a mechanism for signatures and verification. It uses the HMAC construction, based on the MD5 hash function. The keys it uses are generic secret keys.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 0-16 (the output size of MD5 is 16 bytes). Signatures (MACs) produced by this mechanism MUST be taken from the start of the full 16-byte HMAC output.

Table 53, General-length MD5-HMAC: Key and Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	Generic secret
	Any
	0-16, depending on parameters

	C_Verify
	Generic secret
	Any
	0-16, depending on parameters

1516

1517
1518
1519
2.12.4 [bookmark: _bookmark100]
MD5-HMAC

The MD5-HMAC mechanism, denoted CKM_MD5_HMAC, is a special case of the general-length MD5- HMAC mechanism in Section 2.12.3.
It has no parameter, and produces an output of length 16.

1520

1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
2.12.5 [bookmark: _bookmark101]
MD5 key derivation

MD5 key derivation denoted CKM_MD5_KEY_DERIVATION, is a mechanism which provides the capability of deriving a secret key by digesting the value of another secret key with MD5.
The value of the base key is digested once, and the result is used to make the value of derived secret key.
· If no length or key type is provided in the template, then the key produced by this mechanism MUST be a generic secret key. Its length MUST be 16 bytes (the output size of MD5).
· If no key type is provided in the template, but a length is, then the key produced by this mechanism MUST be a generic secret key of the specified length.
· If no length was provided in the template, but a key type is, then that key type must have a well- defined length. If it does, then the key produced by this mechanism MUST be of the type specified in the template. If it doesn’t, an error MUST be returned.
· If both a key type and a length are provided in the template, the length must be compatible with that key type. The key produced by this mechanism MUST be of the specified type and length.

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

1549

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key MUST be set properly.
If the requested type of key requires more than 16 bytes, such as DES3, an error is generated. This mechanism has the following rules about key sensitivity and extractability.
· The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key MAY both be specified to either CK_TRUE or CK_FALSE. If omitted, these attributes each take on some default value.
· If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the derived key MUST as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its CKA_SENSITIVE attribute.
· Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the derived key MUST, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its CKA_EXTRACTABLE attribute.

2.13 [bookmark: _bookmark102]FASTHASH

1550

1551
1552
2.13.1 [bookmark: _bookmark103]
Definitions

Mechanisms:
CKM_FASTHASH

1553

1554
1555
1556
1557
1558
2.13.2 [bookmark: _bookmark104]
FASTHASH digest

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for message digesting, following the U.S. government’s algorithm.
It does not have a parameter.
Constraints on the length of input and output data are summarized in the following table:

Table 54, FASTHASH: Data Length

Function	Input length	Digest length
C_Digest	Any	40

1559
2.14 [bookmark: _bookmark105]
PKCS #5 and PKCS #5-style password-based encryption (PBD)

1560

1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571

2.14.1 [bookmark: _bookmark106]Definitions

The mechanisms in this section are for generating keys and IVs for performing password-based encryption. The method used to generate keys and IVs is specified in PKCS #5.
Mechanisms:
CKM_PBE_MD2_DES_CBC CKM_PBE_MD5_DES_CBC CKM_PBE_MD5_CAST_CBC CKM_PBE_MD5_CAST3_CBC CKM_PBE_MD5_CAST5_CBC CKM_PBE_MD5_CAST128_CBC CKM_PBE_SHA1_CAST5_CBC CKM_PBE_SHA1_CAST128_CBC

1572
1573
1574
1575

CKM_PBE_SHA1_RC4_128 CKM_PBE_SHA1_RC4_40 CKM_PBE_SHA1_RC2_128_CBC CKM_PBE_SHA1_RC2_40_CBC

1576

2.14.2 [bookmark: _bookmark107]Password-based encryption/authentication mechanism parameters

1577

1578
1579
1580

1581
1582
1583
1584
1585
1586
1587
1588

1589

1590
1591

2.14.2.1 CK_PBE_PARAMS; CK_PBE_PARAMS_PTR

CK_PBE_PARAMS is a structure which provides all of the necessary information required by the CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on the PBE generation mechanisms) and the CKM_PBA_SHA1_WITH_SHA1_HMAC mechanism. It is defined as follows:

typedef struct CK_PBE_PARAMS { CK_BYTE_PTR pInitVector; CK_UTF8CHAR_PTR pPassword; CK_ULONG ulPasswordLen; CK_BYTE_PTR pSalt;
CK_ULONG ulSaltLen; CK_ULONG ulIteration;
} CK_PBE_PARAMS;

The fields of the structure have the following meanings:
pInitVector	pointer to the location that receives the 8-byte initialization vector (IV), if an IV is required

1592
1593

pPassword	points to the password to be used in the PBE key generation

1594

ulPasswordLen	length in bytes of the password information

1595

pSalt	points to the salt to be used in the PBE key generation

1596

ulSaltLen	length in bytes of the salt information

1597

ulIteration	number of iterations required for the generation

1598

CK_PBE_PARAMS_PTR is a pointer to a CK_PBE_PARAMS.

1599

1600
1601
1602
1603
1604
1605
2.14.3 [bookmark: _bookmark108]
MD2-PBE for DES-CBC

MD2-PBE for DES-CBC, denoted CKM_PBE_MD2_DES_CBC, is a mechanism used for generating a DES secret key and an IV from a password and a salt value by using the MD2 digest algorithm and an iteration count. This functionality is defined in PKCS #5 as PBKDF1.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of the application-supplied buffer which receives the 8-byte IV generated by the mechanism.

1606

1607
1608
1609
2.14.4 [bookmark: _bookmark109]
MD5-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5_DES_CBC, is a mechanism used for generating a DES secret key and an IV from a password and a salt value by using the MD5 digest algorithm and an iteration count. This functionality is defined in PKCS #5 as PBKDF1.

1610
1611
1612

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of the application-supplied buffer which receives the 8-byte IV generated by the mechanism.

1613

1614
1615
1616
1617
1618
1619
1620
1621
2.14.5 [bookmark: _bookmark110]
MD5-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5_CAST_CBC, is a mechanism used for generating a CAST secret key and an IV from a password and a salt value by using the MD5 digest algorithm and an iteration count. This functionality is analogous to that defined in PKCS #5 PBKDF1 for MD5 and DES.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of the application-supplied buffer which receives the 8-byte IV generated by the mechanism
The length of the CAST key generated by this mechanism MAY be specified in the supplied template; if it is not present in the template, it defaults to 8 bytes.

1622

1623
1624
1625
1626
1627
1628
1629
1630
2.14.6 [bookmark: _bookmark111]
MD5-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5_CAST3_CBC, is a mechanism used for generating a CAST3 secret key and an IV from a password and a salt value by using the MD5 digest algorithm and an iteration count. This functionality is analogous to that defined in PKCS #5 PBKDF1 for MD5 and DES.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of the application-supplied buffer which receives the 8-byte IV generated by the mechanism
The length of the CAST3 key generated by this mechanism MAY be specified in the supplied template; if it is not present in the template, it defaults to 8 bytes.

1631

1632
1633
1634
1635
1636
1637
1638
1639
1640
2.14.7 [bookmark: _bookmark112]
MD5-PBE for CAST128-CBC (CAST5-CBC)

MD5-PBE for CAST128-CBC (CAST5-CBC), denoted CKM_PBE_MD5_CAST128_CBC or
CKM_PBE_MD5_CAST5_CBC, is a mechanism used for generating a CAST128 (CAST5) secret key and an IV from a password and a salt value by using the MD5 digest algorithm and an iteration count. This functionality is analogous to that defined in PKCS #5 PBKDF1 for MD5 and DES.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of the application-supplied buffer which receives the 8-byte IV generated by the mechanism
The length of the CAST128 (CAST5) key generated by this mechanism MAY be specified in the supplied template; if it is not present in the template, it defaults to 8 bytes.

1641

1642
1643
1644
1645
1646
1647
1648
1649
1650
2.14.8 [bookmark: _bookmark113]
SHA-1-PBE for CAST128-CBC (CAST5-CBC)

SHA-1-PBE for CAST128-CBC (CAST5-CBC), denoted CKM_PBE_SHA1_CAST128_CBC or
CKM_PBE_SHA1_CAST5_CBC, is a mechanism used for generating a CAST128 (CAST5) secret key and an IV from a password and salt value using the SHA-1 digest algorithm and an iteration count. This functionality is analogous to that defined in PKCS #5 PBKDF1 for MD5 and DES.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of the application-supplied buffer which receives the 8-byte IV generated by the mechanism
The length of the CAST128 (CAST5) key generated by this mechanism MAY be specified in the supplied template; if it is not present in the template, it defaults to 8 bytes

1651
1652
2.15 [bookmark: _bookmark114]
PKCS #12 password-based encryption/authentication mechanisms

1653

1654
1655
1656
1657
1658
1659

1660
2.15.1 [bookmark: _bookmark115]
Definitions

The mechanisms in this section are for generating keys and IVs for performing password-based encryption or authentication. The method used to generate keys and IVs is based on a method that was specified in PKCS #12.
We specify here a general method for producing various types of pseudo-random bits from a password, p; a string of salt bits, s; and an iteration count, c. The “type” of pseudo-random bits to be produced is identified by an identification byte, ID, described at the end of this section.
Let H be a hash function built around a compression function ∫:Z2 × Z2 → Z2 (that is, H has a chaining

u	v	u

1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690

variable and output of length u bits, and the message input to the compression function of H is v bits). For MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and v=512.
We assume here that u and v are both multiples of 8, as are the lengths in bits of the password and salt strings and the number n of pseudo-random bits required. In addition, u and v are of course nonzero.
1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.
2. Concatenate copies of the salt together to create a string S of length v⋅⎡s/v⎤ bits (the final copy of
the salt MAY be truncated to create S). Note that if the salt is the empty string, then so is S
3. Concatenate copies of the password together to create a string P of length v⋅⎡p/v⎤ bits (the final
copy of the password MAY be truncated to create P). Note that if the password is the empty
string, then so is P.
4. Set I=S||P to be the concatenation of S and P.
5. Set j=⎡n/u⎤.
6. For i=1, 2, …, j, do the following:
a. Set Ai=Hc(D||I), the cth hash of D||I. That is, compute the hash of D||I; compute the hash of that hash; etc.; continue in this fashion until a total of c hashes have been computed, each on the result of the previous hash.
b. Concatenate copies of Ai to create a string B of length v bits (the final copy of Ai MAY be truncated to create B).
c. Treating I as a concatenation I0, I1, …, Ik-1 of v-bit blocks, where k=⎡s/v⎤+⎡p/v⎤, modify I
by setting Ij=(Ij+B+1) mod 2v for each j. To perform this addition, treat each v-bit block as
a binary number represented most-significant bit first
7. Concatenate A1, A2, …, Aj together to form a pseudo-random bit string, A.
8. Use the first n bits of A as the output of this entire process
When the password-based encryption mechanisms presented in this section are used to generate a key and IV (if needed) from a password, salt, and an iteration count, the above algorithm is used. To generate a key, the identifier byte ID is set to the value 1; to generate an IV, the identifier byte ID is set to the value 2.
When the password-based authentication mechanism presented in this section is used to generate a key from a password, salt and an iteration count, the above algorithm is used. The identifier ID is set to the value 3.

1691

1692
1693
1694
1695
1696
2.15.2 [bookmark: _bookmark116]
SHA-1-PBE for 128-bit RC4

SHA-1-PBE for 128-bit RC4, denoted CKM_PBE_SHA1_RC4_128, is a mechanism used for generating a 128-bit RC4 secret key from a password and a salt value by using the SHA-1 digest algorithm and an iteration count. The method used to generate the key is described above.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process. The parameter also has a field to hold the location of an application-supplied

1697
1698
1699

buffer which receives an IV; for this mechanism, the contents of this field are ignored, since RC4 does not require an IV.
The key produced by this mechanism will typically be used for performing password-based encryption.

1700

1701
1702
1703
1704
1705
1706
1707
1708
2.15.3 [bookmark: _bookmark117]
SHA-1_PBE for 40-bit RC4

SHA-1-PBE for 40-bit RC4, denoted CKM_PBE_SHA1_RC4_40, is a mechanism used for generating a 40-bit RC4 secret key from a password and a salt value by using the SHA-1 digest algorithm and an iteration count. The method used to generate the key is described above.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process. The parameter also has a field to hold the location of an application-supplied buffer which receives an IV; for this mechanism, the contents of this field are ignored, since RC4 does not require an IV.
The key produced by this mechanism will typically be used for performing password-based encryption.

1709

1710
1711
1712
1713
1714
1715
1716
1717
1718

1719
1720
2.15.4 [bookmark: _bookmark118]
SHA-1_PBE for 128-bit RC2-CBC

SHA-1-PBE for 128-bit RC2-CBC, denoted CKM_PBE_SHA1_RC2_128_CBC, is a mechanism used for generating a 128-bit RC2 secret key from a password and a salt value by using the SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described above.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of an application-supplied buffer which receives the 8-byte IV generated by the mechanism.
When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective number of bits in the RC2 search space should be set to 128. This ensures compatibility with the ASN.1 Object Identifier pbeWithSHA1And128BitRC2-CBC.
The key and IV produced by this mechanism will typically be used for performing password-based encryption.

1721

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732

1733
2.15.5 [bookmark: _bookmark119]
SHA-1_PBE for 40-bit RC2-CBC

SHA-1-PBE for 40-bit RC2-CBC, denoted CKM_PBE_SHA1_RC2_40_CBC, is a mechanism used for generating a 40-bit RC2 secret key from a password and a salt value by using the SHA-1 digest algorithm and an iteration count. The method used to generate the key and IV is described above.
It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input information for the key generation process and the location of an application-supplied buffer which receives the 8-byte IV generated by the mechanism.
When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective number of bits in the RC2 search space should be set to 40. This ensures compatibility with the ASN.1 Object Identifier pbeWithSHA1And40BitRC2-CBC.
The key and IV produced by this mechanism will typically be used for performing password-based encryption

2.16 [bookmark: _bookmark120]RIPE-MD

1734

1735
1736
1737
1738
1739
2.16.1 [bookmark: _bookmark121]
Definitions

Mechanisms:
CKM_RIPEMD128 CKM_RIPEMD128_HMAC CKM_RIPEMD128_HMAC_GENERAL CKM_RIPEMD160

1740
1741

CKM_RIPEMD160_HMAC CKM_RIPEMD160_HMAC_GENERAL

1742

1743
1744
1745
1746
1747

2.16.2 [bookmark: _bookmark122]RIPE-MD 128 Digest

The RIPE-MD 128 mechanism, denoted CKM_RIMEMD128, is a mechanism for message digesting, following the RIPE-MD 128 message-digest algorithm.
It does not have a parameter.
Constraints on the length of data are summarized in the following table:

Table 55, RIPE-MD 128: Data Length

1748

Function	Data length	Digest length
C_Digest	Any	16

1749

1750
1751
1752
1753
1754
1755
1756

2.16.3 [bookmark: _bookmark123]General-length RIPE-MD 128-HMAC

The general-length RIPE-MD 128-HMAC mechanism, denoted CKM_RIPEMD128_HMAC_GENERAL, is a mechanism for signatures and verification. It uses the HMAC construction, based on the RIPE-MD 128 hash function. The keys it uses are generic secret keys.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 0-16 (the output size of RIPE-MD 128 is 16 bytes). Signatures (MACs) produced by this mechanism MUST be taken from the start of the full 16-byte HMAC output.

Table 56, General-length RIPE-MD 128-HMAC

	Function
	Key type
	Data length
	Signature length

	C_Sign
	Generic secret
	Any
	0-16, depending on parameters

	C_Verify
	Generic secret
	Any
	0-16, depending on parameters

1757

1758
1759
1760
2.16.4 [bookmark: _bookmark124]
RIPE-MD 128-HMAC

The RIPE-MD 128-HMAC mechanism, denoted CKM_RIPEMD128_HMAC, is a special case of the general-length RIPE-MD 128-HMAC mechanism in Section 2.16.3.
It has no parameter, and produces an output of length 16.

1761

1762
1763
1764
1765
1766
2.16.5 [bookmark: _bookmark125]
RIPE-MD 160

The RIPE-MD 160 mechanism, denoted CKM_RIPEMD160, is a mechanism for message digesting, following the RIPE-MD 160 message-digest defined in ISO-10118.
It does not have a parameter.
Constraints on the length of data are summarized in the following table:

Table 57, RIPE-MD 160: Data Length

Function	Data length	Digest length
C_Digest	Any	20

1767

1768
1769
1770
1771
1772
1773
1774
2.16.6 [bookmark: _bookmark126]
General-length RIPE-MD 160-HMAC

The general-length RIPE-MD 160-HMAC mechanism, denoted CKM_RIPEMD160_HMAC_GENERAL, is a mechanism for signatures and verification. It uses the HMAC construction, based on the RIPE-MD 160 hash function. The keys it uses are generic secret keys.
It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired output. This length should be in the range 0-20 (the output size of RIPE-MD 160 is 20 bytes). Signatures (MACs) produced by this mechanism MUST be taken from the start of the full 20-byte HMAC output.

Table 58, General-length RIPE-MD 160-HMAC: Data and Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	Generic secret
	Any
	0-20, depending on parameters

	C_Verify
	Generic secret
	Any
	0-20, depending on parameters

1775

1776
1777
1778

1779
2.16.7 [bookmark: _bookmark127]
RIPE-MD 160-HMAC

The RIPE-MD 160-HMAC mechanism, denoted CKM_RIPEMD160_HMAC, is a special case of the general-length RIPE-MD 160HMAC mechanism in Section 2.16.6.
It has no parameter, and produces an output of length 20.

2.17 [bookmark: _bookmark128]SET

1780

1781
1782
2.17.1 [bookmark: _bookmark129]
Definitions

Mechanisms:
CKM_KEY_WRAP_SET_OAEP

1783
2.17.2 [bookmark: _bookmark130]
SET mechanism parameters

1784
1785

1786
1787

1788
1789
1790
1791
1792

1793

1794

2.17.2.1 CK_KEY_WRAP_SET_OAEP_PARAMS; CK_KEY_WRAP_SET_OAEP_PARAMS_PTR

CK_KEY_WRAP_SET_OAEP_PARAMS is a structure that provides the parameters to the
CKM_KEY_WRAP_SET_OAEP mechanism. It is defined as follows:

typedef struct CK_KEY_WRAP_SET_OAEP_PARAMS { CK_BYTE bBC;
CK_BYTE_PTR pX;
CK_ULONG ulXLen;
} CK_KEY_WRAP_SET_OAEP_PARAMS;

The fields of the structure have the following meanings:
bBC	block contents byte

1795
1796

pX	concatenation of hash of plaintext data (if present) and extra data (if present)

1797
1798
1799

ulXLen	length in bytes of concatenation of hash of plaintext data (if present) and extra data (if present). 0 if neither is present.

1800
1801

CK_KEY_WRAP_SET_OAEP_PARAMS_PTR is a pointer to a
CK_KEY_WRAP_SET_OAEP_PARAMS.

1802

1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823

1824
[bookmark: _bookmark131]
2.17.3 OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted CKM_KEY_WRAP_SET_OAEP, is a mechanism for wrapping and unwrapping a DES key with an RSA key. The hash of some plaintext data and/or some extra data MAY be wrapped together with the DES key. This mechanism is defined in the SET protocol specifications.
It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMS structure. This structure holds the “Block Contents” byte of the data and the concatenation of the hash of plaintext data (if present) and the extra data to be wrapped (if present). If neither the hash nor the extra data is present, this is indicated by the ulXLen field having the value 0.
When this mechanism is used to unwrap a key, the concatenation of the hash of plaintext data (if present) and the extra data (if present) is returned following the convention described [PKCS #11-Curr], Miscellaneous simple key derivation mechanisms. Note that if the inputs to C_UnwrapKey are such that the extra data is not returned (e.g. the buffer supplied in the CK_KEY_WRAP_SET_OAEP_PARAMS structure is NULL_PTR), then the unwrapped key object MUST NOT be created, either.
Be aware that when this mechanism is used to unwrap a key, the bBC and pX fields of the parameter supplied to the mechanism MAY be modified.
If an application uses C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP, it may be preferable for it simply to allocate a 128-byte buffer for the concatenation of the hash of plaintext data and the extra data (this concatenation MUST NOT be larger than 128 bytes), rather than calling C_UnwrapKey twice. Each call of C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP requires an RSA decryption operation to be performed, and this computational overhead MAY be avoided by this means.

2.18 [bookmark: _bookmark132]LYNKS

1825

1826
1827
2.18.1 [bookmark: _bookmark133]
Definitions

Mechanisms:
CKM_KEY_WRAP_LYNKS

1828

1829
1830
1831
1832
1833
1834
1835

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
2.18.2 [bookmark: _bookmark134]
LYNKS key wrapping

The LYNKS key wrapping mechanism, denoted CKM_KEY_WRAP_LYNKS, is a mechanism for wrapping and unwrapping secret keys with DES keys. It MAY wrap any 8-byte secret key, and it produces a 10-byte wrapped key, containing a cryptographic checksum.
It does not have a parameter.
To wrap an 8-byte secret key K with a DES key W, this mechanism performs the following steps:
1. Initialize two 16-bit integers, sum1 and sum2, to 0
2. Loop through the bytes of K from first to last.
3. Set sum1= sum1+the key byte (treat the key byte as a number in the range 0-255).
4. Set sum2= sum2+ sum1.
5. Encrypt K with W in ECB mode, obtaining an encrypted key, E.
6. Concatenate the last 6 bytes of E with sum2, representing sum2 most-significant bit first. The result is an 8-byte block, T
7. Encrypt T with W in ECB mode, obtaining an encrypted checksum, C.
8. Concatenate E with the last 2 bytes of C to obtain the wrapped key.
When unwrapping a key with this mechanism, if the cryptographic checksum does not check out properly, an error is returned. In addition, if a DES key or CDMF key is unwrapped with this mechanism, the parity bits on the wrapped key must be set appropriately. If they are not set properly, an error is returned.

1847

1848
1849
1850
1851
1852
1853
1854
[bookmark: _bookmark135]
3 PKCS #11 Implementation Conformance

An implementation is a conforming implementation if it meets the conditions specified in one or more server profiles specified in [PKCS #11-Prof].
A PKCS #11 implementation SHALL be a conforming PKCS #11 implementation.
If a PKCS #11 implementation claims support for a particular profile, then the implementation SHALL conform to all normative statements within the clauses specified for that profile and for any subclauses to each of those clauses.

1855
[bookmark: _bookmark136]
Appendix A. Acknowledgments

1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants:
Gil Abel, Athena Smartcard Solutions, Inc. Warren Armstrong, QuintessenceLabs Jeff Bartell, Semper Foris Solutions LLC Peter Bartok, Venafi, Inc.
Anthony Berglas, Cryptsoft
Joseph Brand, Semper Fortis Solutions LLC Kelley Burgin, National Security Agency Robert Burns, Thales e-Security
Wan-Teh Chang, Google Inc. Hai-May Chao, Oracle
Janice Cheng, Vormetric, Inc.
Sangrae Cho, Electronics and Telecommunications Research Institute (ETRI) Doron Cohen, SafeNet, Inc.
Fadi Cotran, Futurex Tony Cox, Cryptsoft Christopher Duane, EMC Chris Dunn, SafeNet, Inc. Valerie Fenwick, Oracle
Terry Fletcher, SafeNet, Inc. Susan Gleeson, Oracle Sven Gossel, Charismathics
John Green, QuintessenceLabs Robert Griffin, EMC
Paul Grojean, Individual Peter Gutmann, Individual
Dennis E. Hamilton, Individual Thomas Hardjono, M.I.T.
Tim Hudson, Cryptsoft Gershon Janssen, Individual
Seunghun Jin, Electronics and Telecommunications Research Institute (ETRI) Wang Jingman, Feitan Technologies
Andrey Jivsov, Symantec Corp. Mark Joseph, P6R
Stefan Kaesar, Infineon Technologies Greg Kazmierczak, Wave Systems Corp.

1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

Mark Knight, Thales e-Security Darren Krahn, Google Inc.
Alex Krasnov, Infineon Technologies AG Dina Kurktchi-Nimeh, Oracle
Mark Lambiase, SecureAuth Corporation Lawrence Lee, GoTrust Technology Inc. John Leiseboer, QuintessenceLabs Sean Leon, Infineon Technologies Geoffrey Li, Infineon Technologies Howie Liu, Infineon Technologies
Hal Lockhart, Oracle
Robert Lockhart, Thales e-Security Dale Moberg, Axway Software Darren Moffat, Oracle
Valery Osheter, SafeNet, Inc. Sean Parkinson, EMC
Rob Philpott, EMC Mark Powers, Oracle Ajai Puri, SafeNet, Inc. Robert Relyea, Red Hat Saikat Saha, Oracle
Subhash Sankuratripati, NetApp Anthony Scarpino, Oracle
Johann Schoetz, Infineon Technologies AG Rayees Shamsuddin, Wave Systems Corp. Radhika Siravara, Oracle
Brian Smith, Mozilla Corporation David Smith, Venafi, Inc.
Ryan Smith, Futurex
Jerry Smith, US Department of Defense (DoD) Oscar So, Oracle
Graham Steel, Cryptosense
Michael Stevens, QuintessenceLabs Michael StJohns, Individual
Jim Susoy, P6R
Sander Temme, Thales e-Security Kiran Thota, VMware, Inc.
Walter-John Turnes, Gemini Security Solutions, Inc. Stef Walter, Red Hat
James Wang, Vormetric Jeff Webb, Dell
Peng Yu, Feitian Technologies

1937
1938

Magda Zdunkiewicz, Cryptsoft Chris Zimman, Individual

1939
[bookmark: _bookmark137]
Appendix B. Manifest constants

1940
1941

1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

The following constants have been defined for PKCS #11 V2.40. Also, refer to [PKCS #11-Base] and
[PKCS #11-Curr] for additional definitions.

/*
· Copyright OASIS Open 2014. All rights reserved.
· OASIS trademark, IPR and other policies apply.
· http://www.oasis-open.org/policies-guidelines/ipr
*/

#define CKK_KEA 0x00000005
#define CKK_RC2 0x00000011
#define CKK_RC4 0x00000012
#define CKK_DES 0x00000013
#define CKK_CAST 0x00000016
#define CKK_CAST3 0x00000017
#define CKK_CAST5 0x00000018
#define CKK_CAST128 0x00000018
#define CKK_RC5 0x00000019
#define CKK_IDEA 0x0000001A
#define CKK_SKIPJACK 0x0000001B
#define CKK_BATON 0x0000001C
#define CKK_JUNIPER 0x0000001D
#define CKM_MD2_RSA_PKCS 0x00000004
#define CKM_MD5_RSA_PKCS 0x00000005
#define CKM_RIPEMD128_RSA_PKCS 0x00000007
#define CKM_RIPEMD160_RSA_PKCS 0x00000008
#define CKM_RC2_KEY_GEN 0x00000100
#define CKM_RC2_ECB 0x00000101
#define CKM_RC2_CBC 0x00000102
#define CKM_RC2_MAC 0x00000103
#define CKM_RC2_MAC_GENERAL 0x00000104
#define CKM_RC2_CBC_PAD 0x00000105
#define CKM_RC4_KEY_GEN 0x00000110
#define CKM_RC4 0x00000111
#define CKM_DES_KEY_GEN 0x00000120
#define CKM_DES_ECB 0x00000121
#define CKM_DES_CBC 0x00000122
#define CKM_DES_MAC 0x00000123
#define CKM_DES_MAC_GENERAL 0x00000124
#define CKM_DES_CBC_PAD 0x00000125
#define CKM_MD2 0x00000200
#define CKM_MD2_HMAC 0x00000201
#define CKM_MD2_HMAC_GENERAL 0x00000202
#define CKM_MD5 0x00000210
#define CKM_MD5_HMAC 0x00000211
#define CKM_MD5_HMAC_GENERAL 0x00000212
#define CKM_RIPEMD128 0x00000230
#define CKM_RIPEMD128_HMAC 0x00000231
#define CKM_RIPEMD128_HMAC_GENERAL 0x00000232
#define CKM_RIPEMD160 0x00000240
#define CKM_RIPEMD160_HMAC 0x00000241
#define CKM_RIPEMD160_HMAC_GENERAL 0x00000242
#define CKM_CAST_KEY_GEN 0x00000300
#define CKM_CAST_ECB 0x00000301
#define CKM_CAST_CBC 0x00000302
#define CKM_CAST_MAC 0x00000303
#define CKM_CAST_MAC_GENERAL 0x00000304
#define CKM_CAST_CBC_PAD 0x00000305
#define CKM_CAST3_KEY_GEN 0x00000310

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061

#define CKM_CAST3_ECB 0x00000311
#define CKM_CAST3_CBC 0x00000312
#define CKM_CAST3_MAC 0x00000313
#define CKM_CAST3_MAC_GENERAL 0x00000314
#define CKM_CAST3_CBC_PAD 0x00000315
#define CKM_CAST5_KEY_GEN 0x00000320
#define CKM_CAST128_KEY_GEN 0x00000320
#define CKM_CAST5_ECB 0x00000321
#define CKM_CAST128_ECB 0x00000321
#define CKM_CAST5_CBC 0x00000322
#define CKM_CAST128_CBC 0x00000322
#define CKM_CAST5_MAC 0x00000323
#define CKM_CAST128_MAC 0x00000323
#define CKM_CAST5_MAC_GENERAL 0x00000324
#define CKM_CAST128_MAC_GENERAL 0x00000324
#define CKM_CAST5_CBC_PAD 0x00000325
#define CKM_CAST128_CBC_PAD 0x00000325
#define CKM_RC5_KEY_GEN 0x00000330
#define CKM_RC5_ECB 0x00000331
#define CKM_RC5_CBC 0x00000332
#define CKM_RC5_MAC 0x00000333
#define CKM_RC5_MAC_GENERAL 0x00000334
#define CKM_RC5_CBC_PAD 0x00000335
#define CKM_IDEA_KEY_GEN 0x00000340
#define CKM_IDEA_ECB 0x00000341
#define CKM_IDEA_CBC 0x00000342
#define CKM_IDEA_MAC 0x00000343
#define CKM_IDEA_MAC_GENERAL 0x00000344
#define CKM_IDEA_CBC_PAD 0x00000345
#define CKM_MD5_KEY_DERIVATION 0x00000390
#define CKM_MD2_KEY_DERIVATION 0x00000391
#define CKM_PBE_MD2_DES_CBC 0x000003A0
#define CKM_PBE_MD5_DES_CBC 0x000003A1
#define CKM_PBE_MD5_CAST_CBC 0x000003A2
#define CKM_PBE_MD5_CAST3_CBC 0x000003A3
#define CKM_PBE_MD5_CAST5_CBC 0x000003A4
#define CKM_PBE_MD5_CAST128_CBC 0x000003A4
#define CKM_PBE_SHA1_CAST5_CBC 0x000003A5
#define CKM_PBE_SHA1_CAST128_CBC 0x000003A5
#define CKM_PBE_SHA1_RC4_128 0x000003A6
#define CKM_PBE_SHA1_RC4_40 0x000003A7
#define CKM_PBE_SHA1_RC2_128_CBC 0x000003AA
#define CKM_PBE_SHA1_RC2_40_CBC 0x000003AB
#define CKM_KEY_WRAP_LYNKS 0x00000400
#define CKM_KEY_WRAP_SET_OAEP 0x00000401
#define CKM_SKIPJACK_KEY_GEN 0x00001000
#define CKM_SKIPJACK_ECB64 0x00001001
#define CKM_SKIPJACK_CBC64 0x00001002
#define CKM_SKIPJACK_OFB64 0x00001003
#define CKM_SKIPJACK_CFB64 0x00001004
#define CKM_SKIPJACK_CFB32 0x00001005
#define CKM_SKIPJACK_CFB16 0x00001006
#define CKM_SKIPJACK_CFB8 0x00001007
#define CKM_SKIPJACK_WRAP 0x00001008
#define CKM_SKIPJACK_PRIVATE_WRAP 0x00001009
#define CKM_SKIPJACK_RELAYX 0x0000100a
#define CKM_KEA_KEY_PAIR_GEN 0x00001010
#define CKM_KEA_KEY_DERIVE 0x00001011
#define CKM_FORTEZZA_TIMESTAMP 0x00001020
#define CKM_BATON_KEY_GEN 0x00001030
#define CKM_BATON_ECB128 0x00001031
#define CKM_BATON_ECB96 0x00001032
#define CKM_BATON_CBC128 0x00001033
#define CKM_BATON_COUNTER 0x00001034

2062
2063
2064
2065
2066
2067
2068
2069
2070

2071

#define CKM_BATON_SHUFFLE 0x00001035
#define CKM_BATON_WRAP 0x00001036
#define CKM_JUNIPER_KEY_GEN 0x00001060
#define CKM_JUNIPER_ECB128 0x00001061
#define CKM_JUNIPER_CBC128 0x00001062
#define CKM_JUNIPER_COUNTER 0x00001063
#define CKM_JUNIPER_SHUFFLE 0x00001064
#define CKM_JUNIPER_WRAP 0x00001065
#define CKM_FASTHASH 0x00001070

2072

2073
[bookmark: _bookmark138]
Appendix C. Revision History

	Revision
	Date
	Editor
	Changes Made

	wd01
	May 16,
2013
	Susan Gleeson
	Initial Template import

	wd02
	July 7, 2013
	Susan Gleeson
	Fix references, add participants list, minor cleanup

	wd03
	October 27,
2013
	Robert Griffin
	Final participant list and other editorial changes for Committee Specification Draft

	csd01
	October 30,
2013
	OASIS
	Committee Specification Draft

	wd04
	February 19,
2014
	Susan Gleeson
	Incorporate changes from v2.40 public review

	wd05
	February 20,
2014
	Susan Gleeson
	Regenerate table of contents (oversight from wd04)

	WD06
	February 21,
2014
	Susan Gleeson
	Remove CKM_PKCS5_PBKD2 from the mechanisms in Table 1.

	csd02
	April 23,
2014
	OASIS
	Committee Specification Draft

	csd02a
	Sep 3 2014
	Robert Griffin
	Updated revision history and participant list in preparation for Committee Specification ballot

	wd07
	Nov 3 2014
	Robert Griffin
	Editorial corrections

2074
image1.png
OASIS)

