FIPS PUB 180-4

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

Secure Hash Standard (SHS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
hitp://dx.doi.org/10.6028/NIST FiIPS.180-4

August 2015

U.S. Department of Commerce
Penee Pritzher, Secretary

National institute of Standards and Technology
Willie F. May, Under Secretary for Standaids and Technology and Director

FOREWORD

The Federal Information Processing Standards Publication Series of the National Institute
of Standards and Technology (NIST) is the official series of publications relating to
standards and guidelines adopted and promulgated under the provisions of the Federal
Information Security Management Act (FISMA) of 2002.

Comments concerning FIPS publications are welcomed and should be addressed to the
Director, Information Technology Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900.
Charles H. Romine, Director
information Technology Laboratory

Abstract

This standard specifies hash algorithms that can be used to generate digests of messages.
The digests are used to detect whether messages have been changed since the digests
were generated.

Key words: computer security, cryptography, message digest, hash function, hash
algorithm, Federal Information Processing Standards, Secure Hash Standard.

il

Federal Information
Processing Standards Publication 180-4

August 2015

Announcing the

SECURE HASH STANDARD

Federal Information Processing Standards Publications (FIPS PUBS) arce igsued by the National
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce
pursuant to Section 5131 of the Imformation Technology Management Reform Act of 1996
(Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235).

1. Name of Standard: Secure Hash Standard (SHS) (FIPS PUB 180-4).
2. Category of Standard: Computer Security Standard. Cryptography.

3. Explanation: This Standard specifics secure hash algorithms - SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224 and SHA-512/256 - for computing a condensed
representation of electronic data (message). When a message of any length less than 2% bits (for
SHA-1. SHA-224 and SHA-256) or less than 2% bits (for SHA-384, SHA-512, SHA-512/224
and SHA-512/256) is input to a hash algorithm, the result is an output calied a message digest.
The message digests range in length from 160 to 512 bits, depending on the algorithm. Secure
hash algorithms are typically used with other cryptographic algorithms. such as digital signature
algorithms and keyed-hash message authentication codes, or in the generation of random
numbers (bits).

The hash algorithms specified in this Standard are called secure because. for a given algorithm, it
ts computationally inteasible 1) to find a message that corresponds to a given message digest, or
2) to find two different messages that produce the same message digest. Any change to a
message will. with a very high probability, result in a different message digest. This will result in
a verification failure when the secure hash algorithm is used with a digital signature algorithm or
a keyed-hash message authentication algorithm.

This Standard supersedes FIPS [80-3 [FIPS 180-3].
4. Approving Authority: Secretary of Commerce.

5. Maintenance Agency: U.S. Department of Commerce, National Institute of Standards and
Technology (NIST), Information Technology Laboratory (IT1.).

6. Applicability: This Standard is applicable to all Federal departments and agencies for the
protection of sensitive unclassified information that is not subject to Title 10 United States Code
Section 2315 (10 USC 2315) and that is not within a national security system as defined in Title
40 United States Code Section 11103(a)(1) (40 USC 11103(a)(1)). Either this Standard or
Federal Information Processing Standard (FIPS) 202 must be implemented wherever a secure
hash algorithm 1s required for Federal applications, including as a component within other
cryptographic algorithms and protocols. This Standard may be adopted and used by non-Federal
Government crganizations.

7. Specifications: Federal Information Processing Standard (FIPS) 180-4, Secure Hash Standard
{SHS) (affixed).

8. Implementations: The secure hash algorithms specified herein may be implemented in
software, firmware, hardware or any combination thereof, Only algorithm implementations that
are validated by NIST will be considered as complymg with this standard. Information about the
validation program can be obtained at hitp://esre.nist.govieroups/STM/ index huml.

9. Implementation Schedule: Guidance regarding the testing and validation to FIPS 180-4 and
its relationship to FIPS 140-2 can be found in [G .10 of the lmplementation Guidance for FIPS
PUB 140-2 and the Cryptographic Module Validation Program at

hitp:fesrenist.gov/eroups/STM/emvp/index. himl.

10. Patents: Implementations of the secure hash algorithms in this standard may be covered by
U.S. or foreign patents.

11. Export Control: Certain cryptographic devices and technical data regarding them are
subject to Federal export controls. Exports of cryptographic modules implementing this standard
and technical data regarding them must comply with these Federal regulations and be licensed by
the Bureau of Export Administration of the U.S. Department of Commerce. Information about
export regulations s avatlable at: hup//www bis.doc.goviindex htin.

12. Qualifications: While it is the intent of this Standard to specity general security
requirements for generating a message digest, conformance to this Standard does not assure that
a particular implementation is secure. The resposnsible authority in each agency or department
shall assure that an overall implementation provides an acceptable level of security. This
Standard will be reviewed every five years in order to assess its adequacy.

13. Waiver Procedure: The Federal Information Security Management Act (FISMA) does not
allow for waivers to a FIPS that is made mandatory by the Secretary of Commerce.

14. Where to Obtain Copies of the Standard: This publication is available electronically by
accessing http://esre.nist.oov/publications/. Other computer security publications are available at
the same web site.

3.

6.

Federal Information
Processing Standards Publication 18(-4

Specifications for the

SECURE HASH STANDARD

Table of Contents

INTRODUCTTION oot crrerisisrersvseeresisrnsssrosissersserssssersses s rstsserssesassssssbsbssnssasiesbasss iostostosrasssssssasbenss
D N I T N S it trr vt s st reersr e s et as e s s s s a st ea e s R e n s agsen Rt ersraesabsbesrenbesbserabanserontansvanatassenesss
21 GLOSSARY OF TERMS AND A CRONY M Lo e e e
2.2 ALGORITHM PA}\AM}"E‘FE\S, SYMBOLS, AND TERMS e
221 Poaramelers .
222 Svmbols and ()pef a!mm
NOTATION AND CONVENTIONS Lottt ss s vsss s ssssrsas s sss s s s rar s sreasrssn vasss vesnn
31 BT ST RINGS AN N TE GRS Lt e e e e
32 LI S RN B (N R O R S L OO
FUNCTIONS AND CONSTANTS oo iriecrssrstesrs s rsrtsis s tin s s se st nssnsrasssssasessmesassnsars sssssasrassaie
4.1] N 5 2 U U O P

.01 SHAT Functions .
412 KSHA-224 cmd!\}'” 73(1 UHACTIONY..

413 SHA-384 SHA-312, SHA-312:224 uml’ SHI Ji’ 73()}ummms,,‘.,,.,,,_,,._,‘._

4.2 CONSTANTS ..

421 SHA- l (omfamf\
422 SHA-224 and SHI 73((GRSHARLS .
423 SHA-384 SHA-312, SHA-312224 afm'bH{ JI’ 73((onsmms‘.‘.....‘.,‘.‘.,‘..‘,..,‘..‘..‘.,,.".,
PREPROCESSING oooovecctrrrrcererieairercrrarirsissinrs sarasssstasasiasassnssassatesios sonss sastassassansntes shosos nssssansassarens
51 PADDING THE MESSAGE oottt ettt ts e ree et e s et et mar e st aaeaes s aeees aas e e ese e reanan
5.0 SHA-L SHA-224 and SHA-256 . ‘
512 SHA-384 SHA-512, SHA- J/2/22J cmd SHI 31" "Jé
52 P A RS NG THE M S S A 1ottt ittt vr e st it e e et ees e aa et ees sas e 1eeasaeereeeaaesee eenemeaneees
521 SHA-Il SHA-224 and SHA-236 . .
522 SHA-384 SHA-512 SHA-512 324 cmc! SH 2.'256
33 SETTING THE INITIAL HASH VALUE ()t
3 3 L A
334 SHA-384.
531 SHA-312 .
3.6 SHA-3727.
SECURE HASH ALGORITHMS e rrirerrrerrirrerrmessersrstririerarsssressrsssrrerrsrsess e seriessssesses
6.1 S A T e e
.00 SHAT PreproceSSing ..o

6.1.2 SHA-T Hash Computaiion.

..................... 4
..................... 4
o
]

..................... 7

..................... 7
..................... g

................... 10

................... 10
o 1O
A0

1
11

e AT
LA

12

18

6.4.3 Alternate Method for Compuiing a SHA-1 Message Digest....................... 20
0.2 BHAZS0 e ettt e nee e 2
62,1 SHA-236 Preprocessing ...
6.2.2 SHA-2356 Hash Computotion. ... 22
B3 S A e e ettt e et e 23
B4 S A S L et e e ettt e ettt 24
GA L SHA-312 Preprocessing o T UR ST R e 24
6.4.2 SHA-312 Hash Computaion. ...
0.5 S A R B o e et 26
0.0 SHA-S L e ettt 26
0.7 SHA-S L2506 e et 26

7. TRUNCATION OF A MESSAGE DIGEST i st serms et emsssi o arssssnsaresnses 27

APPENDIX A: ADINTIONAL INFORMATION (ot e e ean s rs s nan e sassssssssssresresassssassasassns 28

Al SECURITY OF THE SECURE HASH A LGORITHMS o e e e e 28
A2 IMPLEMENTATION NOTES e
AT OBIBECTIDENTIFIERS o oo e e

APPENDIX B: REFERENCES. ... e rerts e e e r T gAY E et e e b ke e bR At s e rdan et 29

APPENDIX C: TECHNICAL CHANGES FROM FIPS 180-3 i crnvcecnccccnncrnenesneesanaessssesssesssisenns 30

ERRATUM ittt e rs st e rr e e s sra a8 et £ ek s bbb b e e s aa s bt s b e PP 31

J

1. INTRODUCTION

This Standard specifies secure hash algorithms, SHA-1, SHA-224, SHA-256, SHA-384, SHA-
512, SHA-512/224 and SHA-512/256. All of the algorithms are iterative. one-way hash
functions that can process a message to produce a condensed representation calied a message
digest. These algorithms enable the determination of a message’s integrity: any change to the
message witl, with a very high probability, result in a different message digest. This property is
useful in the generation and verification of digital signatures and message authentication codes,
and in the generation of random numbers or bits,

Each algorithm can be described in two stages: preprocessing and hash computation.
Preprocessing involves padding a message, parsing the padded message into m-bit blocks. and
setting initialization values to be used in the hash computation. The hash computation generates
a message schedule from the padded message and uses that schedule. along with functions,
constants, and word operations to iteratively generate a series of hash values. The final hash
value generated by the hash computation 1s used to determine the message digest.

The algorithms differ most significantly in the security strengths that are provided for the data
being hashed. The security strengths of these hash functions and the system as a whole when
each of them is used with other cryptographic algorithms, such as digital signature aigorithms
and keved-hash message authentication codes. can be found in [SP 800-57] and [SP 800-107].

Additionally, the algorithms differ in terms of the size of the blocks and words of data that are
used during hashing or message digest sizes. Figure 1 presents the basic properties of these hash
algorithms. .

Figure 1: Seeure Hash Algorithm Properties

,-,
3

2. DEFINITIONS

2.1 Glossary of Terms and Acronyms

Bit
Byte
FIPS

NIST

A binary digit having a value of 0 or |.

A group of eight bits.

Federal Information Processing Standard,
National Institute of Standards and Technology.
Secure Hash Algorithm.

Special Publication

A group of either 32 bits (4 bytes) or 64 bits (8 byles). depending on the
secure hash algorithm.

2.2 Algorithm Parameters, Symbols, and Terms

2.2.1 Parameters
The following parameters are used in the secure hash algorithm specifications in this Standard.

a b oc ..

hrlié

.
H

K,

bl

h

Working variables that are the w-bit words used in the computation of the
hash values, A",

— by - . W) ,
The M hash value. 117 is the initicl hash value; HY ig the final hash value

and is used to determine the message digest.

s .t (i V. - “
he /% word of the i hash value. where 7757 is the left-most word of hash

value 7.

Constant value to be used for the iteration f of the hash computation.
Number of zeroes appended to a message during the padding step.
Length of the message, M. in bits.

Number of bits in a message block, M,

Message to be hashed.

A

Vit
M

n

Message block 7, with a size of m bits.

e A . R _ s , -
The /7 word of the i message block, where M) is the left-most word of

message block 1.

Number of bits to be rotated or shifted when a word is operated upon.
Number of blocks in the padded message.

Temporary w-bit word used in the hash computation.

Number of bits in a word.

The " w-bit word of the message schedule.

2.2.2 Symbolis and Operations
The following symbols are used in the secure hash algorithm specifications; each operates on w-

hit words.

<<

Bitwise AND operation.

Bitwise OR (“inclusive-OR™) operation.
Bitwise XOR (“exclusive-OR™) operation.
Bitwise complement operation.

Addition modufo 2",

Left-shift operation, where x << n is obtained by discarding the left-most n
bits of the word x and then padding the result with » zeroes on the right.

Right-shift operation, where x >> n is obtained by discarding the right-
most # bits of the word x and then padding the result with » zeroes on the
left.

The following operations are used in the secure hash algorithm specifications:

ROTL"(x)

ROTR"(x)

The rotate lefi (circular left shift) operation, where x is a w-bit word and »
is an integer with 0 < n < w_is defined by ROTL "(x)=(x << n) v
(x == w - n).

The rotare right (circular right shift) operation, where x is a w-bit word
and » is an integer with 0 € n < w, is defined by ROTR "(x)=(x >> n) v
(x <<w - n}.

SHR "(x) The right shift operation, where x is a w-bit word and # is an integer with 0
< n<w, is defined by SHR "(x)=x >> n.

3.

3.1

NOTATION AND CONVENTIONS

Bit Strings and Integers

The following terminology related to bit strings and integers will be used.

1.

2

tad

A hex digit is an element of the set {0, 1,.., 9, a,.., f}. A hex digitis the
representation of a 4-bit string. For example, the hex digit <7 represents the 4-bit
string “0111", and the hex digit “a” represents the 4-bit string “1010™.

A word 1s a w-bit string that may be represented as a sequence of hex digits. To
convert a word to hex digits, each 4-bit string is converted to its hex digit equivalent,
as described in (1) above. For example, the 32-bit string

1010 00G1 QGO0 0011 12111 11r0 9010 0012
can be expressed as “al03£e23", and the 64-bit string

1010 0001 0000 OG11 11311 111¢ 0010 0011

0011 ©010 11310 11311 0011 0000 C©DOLI 1010
can be expressed as "ai03fel332e1301a™
Throughout this specification, the “big-endian” convention is used when expressing
both 32- and 64-bit words, so that within each word, the most significant bit is stored
in the lefi-most bit position.

An infeger may be represented as a word or pair of words. A word representation of
the message length, ¢, in bits, is required for the padding techniques of Sec. 5.1.

An integer between 0 and 2°°-1 inelusive may be represented as a 32-bit word. The
Jeast significant four bits of the integer are represented by the right-most hex digit of
the word representation. For example, the integer 291=2" + 2° + 2" + 2°=056+32+2+1
is represented by the hex word “C0000123”.

The same holds true for an integer between 0 and 2™t jnclusive, which may be
represented as a 64-bit word.

If Zis an integer, 0 £ Z< 2% then 222X+ ¥, where 0 < ¥ <2% and 0 < ¥ < 2%,
Since X and Y can be represented as 32-bit words x and y, respectively, the integer Z
can be represented as the pair of words (v, ¥). This property is used for SHA-1, SHA-
224 and SHA-256.

3.2

It 7 is an integer, § £ Z < 2% then Z=2""X + ¥, where 0 < X <2 and 0 < ¥ < 2%
Since X and ¥ can be represented as 64-bit words x and y, respectively, the integer Z
can be represented as the pair of words (x, y). This property is used for SHA-384,
SHA-512, SHA-512/224 and SHA-512/256.

For the secure hash algorithms, the size of the message block - m bits - depends on the
algorithm.

a) For SHA-1, SHA-224 and SHA-256, cach message block has 512 bits, which are
represented as a sequence of sixteen 32-bit words.

b) For SHA-384, SHA-512, SHA-512/224 and SHA-512/256 cach message block
has 1024 bits. which are represented as a sequence of sixteen 64-bit words.

Operations on Words

The following operations are applied to w-bit words in all five secure hash algorithms. SHA-1,
SHA-224 and SHA-256 operate on 32-bit words (w=32), and SHA-384, SHA-512, SHA-
512/224 and SHA-512/256 operate on 64-bit words (w=64).

1.

2.

[P8

Bitwise logical word operations: A, v, @, and — (see Sec. 2.2.2).
Addition modulo 2",
The operation x + y is defined as follows. The words x and y represent integers X and
Y,where 0 € X <2%and 0 < ¥ < 2", For positive integers {Jand V, let I/ mod I be
the remainder upon dividing {/ by V. Compute

Z=(X+ ¥)ymod 2",

Then O < Z < 2", Convert the integer Z to a word, z, and define z=x + y.

The right shift operation SHR "(x), where x is a w-bit word and # is an integer with 0
< n<w,1s defined by

SHR"(x)=x >> n.

This operation is used in the SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224

and SHA-512/256 aigorithms.

The rotate right (circular right shift) operation ROTR "(x), where x is a w-bit word

and » is an integer with 0 < » <w, 1s defined by

ROTR(x)=(x >> n) v (x <<w - n).

6.

Thus, ROTR "(x) is equivalent to a circular shift (rotation) of x by » positions to the
right.

This operation is used by the SHA-224, SHA-256, SHA-384, SHA-512. SHA-
512/224 and SHA-512/256 algorithms.

The rotate left {circular left shift) operation. ROTL "(x), where x is a w-bit word and »n
is an integer with 0 < » <w, is defined by

ROTL"(x)=(x << n) v (x >>w - n).

Thus, ROTL "(x) is equivalent Lo a circular shift (rotation) of x by » positions to the
teft.

This operation is used only in the SHA-{ algorithm.
Note the following equivalence relationships, where w is fixed in each relationship:
ROTL"(x) ~ ROTR "(x)

ROTR"(x) = ROTL " "(x)

4, FUNCTIONS AND CONSTANTS

4.1 Functions

This section defines the functions that are used by each of the algorithms. Although the SHA-
224, SHA-256, SHA-384,SHA-512, SHA-512/224 and SHA-512/256 algorithms all use similar
functions, their descriptions are separated into sections for SHA-224 and SHA-256 (Sec. 4.1.2)
and for SHA-384, SHA-512, SHA-512/224 and SHA-512/256 (Sec. 4.1.3), since the input and
output for these functions are words of different sizes. Each of the algorithms include Ch(x, v. z)
and Maj(x, y. z) functions; the exclusive-OR operation (@) in these functions may be replaced
by a bitwise OR operation (v) and produce identical results.

411 SHA-1 Functions
SHA-T uses a sequence of logical functions, fi. fi...., fro. Each function f, where 0 < ¢ £ 79,

operates on three 32-bit words, x, ¥, and z, and produces a 32-bit word as output. The function f,
(x, y, 2) is defined as follows:

r~ Chix, v, 27 x Ay) @ (—xAz) 0<tr<i9
Paritlx, y.zyx @ y & 2 201 £ 39
Ma(x, v, 2)0=xry¥) @ (x Az} B (v AZ) 40 £+ < 59

_ Pari(x,y, z2)=x @ y @ = 60 s 79,

41,2 SHA-224 and SHA-256 Functions
SHA-224 and SHA-256 both use six logical functions, where each function operates on 32-bit
words, which are represented as x, y, and z. The result of each function is a new 32-bit word.

Ch(x.y.z) = (xAn1)@(=xrnaz) (4.2)
Maj(x,y.z) = (xAy)@(xAz)@(yAz) (4.3)
S0 = ROTR) @ ROTR“() @ ROTR™(x) (4.4)
¥ = ROTR'x) @® ROTR"() & ROTR™(x) (4.5)
acPx) = ROTR'(x) @ ROTR™(x) & SHR(x) (4.6)
aPx)y = ROTRY(x) @ ROTR"(x) & SHR'"(x) (4.7)

0

41.3 SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Functions
SHA-384, SHA-312, SHA-512/224 and SHA-512/256 use six logical functions. where euch
Junction operates on 04-bit words, which are represented as x, y, and z. The result of each
function is a new 64-bit word.

Chix,y,zy = {xApP)B(~xnz) (4.8)
Maj(x.y.z) = (xA@xArn@D(yaz) (4.9
YU = ROTR™x) ® ROTR™(x) @ ROTR(x) (4.10)
YU = ROTRYx) © ROTR™x) @ ROTR*(v) (4.11)
ol (x) = ROTR'(x) ® ROTRYx) @ SHR'(x) (4.12)
o xy = ROTR"(x) @ ROTR™(x)y @ SHR"(x) (4.13)

4.2 Constants

4.21 SHA-1 Constants
SHA-1 uses a sequence of eighty constant 32-bit words, Ky, Ky,..., Kz, which are given by

7 Safz2999 0<r<19
fedBebhal 20 <y <39
K, =< (4.14)
gflkbode 40 < f < 59
 catzcldéa 60 <1< 79

422 SHA-224 and SHA-256 Constants

SHA-224 and SHA-256 use the same sequence of sixty-four constant 32-bit words.

KO KT, KE™. These words represent the first thirty-two bits of the fractional parts of
the cube roots of the first sixty-four prime numbers. In hex. these constant words are (from [eft
to right)

S56¢25h BOrf1lifl
ehd 4 80debhl?s
6 4m748das

3 279147
Oaint

128a21%8 7137

A4 Taate

s TeLY88da
14252967

4.2.3 SHA-384, SHA-512, SHA-512/224 and SHA-512/256 Constants
SHA-384, SHA-512, SHA-512/224 and SHA-512/256 use the same sequence of eighty constant
64-bit words, K" K KB These words represent the first sixty-four bits of the

fractional parts of the cube roots of the first eighty prime numbers. In hex, these constant words
are (from left to right)

i

bead
17484

B 0
Sh D AR

EN

Sodeleble

LS0dae
cShebc
miadofasc

Preprocessing consists of three steps: padding the message, M (Sec. 5.1), parsing the message
into message blocks (Scc. 5.2), and setting the initial hash value, 7Y (Sec. 5.3),

5.1 Padding the Message

The purpose of this padding is to ensure that the padded message is a multiple of 512 or 1024
bits, depending on the algorithm. Padding can be inserted before hash computation begins on a
message, or at any other time during the hash computation prior to processing the block(s) that
will contain the padding.

51.1 SHA-1, SHA-224 and SHA-256

Suppose that the length of the message, M, is 7 bits. Append the bit “17 to the end of the
message, followed by & zero bits, where k& is the smallest, non-negative solution to the equation
£+ 1+k=448mod 512 . Then append the 64-bit block that is equal to the number ¢ expressed
using a binary representation. For example, the (8-bit ASCII) message “abe™ has length
8x3 =24, so the message is padded with a one bit, then 448 — (24 + 1) = 423 zero bits, and then
the message length, to become the 512-bit padded message

423 64
————s, s i,
01100001 01100010 01100011 1 00..00 00..011000
[P —
'..a*? “h:\ﬁ -'-ct‘ :,- e ’)4

The length of the padded message should now be a multiple of 512 bits.

5.1.2 SHA-384, SHA-512, SHA-512/224 and SHA-512/256

Suppose the length of the message M. in bits, is ¢ bits. Append the bit “17 to the end of the
message, followed by k& zero bits, where £ is the smallest non-negative solution to the equation
f4+1+ 4k =89 mod1024. Then append the 128-bit block that is equal to the number ¢ expressed
using a binary representation. For example, the (8-bit ASCII) message “abe” has length
8x3 =24 so the message is padded with a one bit, then 896 — (24 + 1) = 871 zero bits, and then
the message length, to become the 1024-bit padded message

871 128
01160001 GLl10001C 01100011 1 00..00 00011000
- R
‘va"$ |.b97 &nc'.\‘ p o 24

The length of the padded message should now be a multiple of 1024 bits.

5.2 Parsing the Message

The message and its padding must be parsed into N m-bit blocks.

5.2.1 SHA-1, SHA-224 and SHA-256

For SHA-1. SHA-224 and SHA-256, the message and its padding are parsed into N 512-bit
blocks, M” M, MY Since the 512 bits of the input block may be expressed as sixteen 32-

bit words, the first 32 bits of message block 7 are denoted M, the next 32 bits are M\, and so

onupto M,

5.2.2 SHA-384, SHA-512, SHA-512/224 and SHA-512/256

For SHA-384, SHA-512, SHA-512/224 and SHA-512/256, the message and its padding are
parsed into N 1024-bit blocks, A4, A1) . MY Since the 1024 bits of the input biock may be

expressed as sixteen 64-bit words, the first 64 bits of message block i are denoted M| the next

64 bits are M, and so onup to MY,

5.3 Setting the Initial Hash Value (H”)

Before hash computation begins for each of the secure hash algorithms, the initial hash value,
HY, must be set. The size and number of words in £7° "depends on the message digest size.

5.3.1 SHA-1
For SHA-1, the initial hash value, H'”, shall consist of the following five 32-bit words, in hex:

HY = 67452301
H" = efcdab8d
HI" = o98badcfe
H" = 10325476
H = c3d2e1f£0

5.3.2 SHA-224
For SHA-224, the initial hash value, /" shall consist of the following eight 32-bit words, in
hex:

I = c1059eas
H® = 56700507
L7~ 30704417
HY _ 290e5939
HY? fecoobst
' - ggsgisia
HE ~ ciroseat

7o)
H; befadfad

5.3.3 SHA-256

For SHA-256, the initial hash value, B’ shall consist of the following eight 32-bit words. in
hex:

H" = 6a092667
H" = bbélaess
HY = 3c6ef3ir

HY = a54ff53a
H" = 510e527f

HY = 9p05688c
HIY = 1f83d%ab
H{"” = 5belcdl9

These words were obtained by taking the first thirty-two bits of the fractional parts of the sguare
roots of the first eight prime numbers.

5.3.4 SHA-384

For SHA-384, the initial hash value, J/7, shall consist of the following eight 64-bit words. in

hex:
H" = cbhbb9d5dc1059%eds
H" = 62922092a367cd507
H = 815901523070dd17
HY = 152fecd8f70e5939
H® = 67332667f£c00b31
H" = 8eb44a8768581511
H" = db0cle0d64f98Fa’
HY = 4705481dbefadfad

i

These words were obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the ninth through sixteenth prime numbers,

5.3.5 SHA-512
For SHA-512, the initial hash value. F'"', shall consist of the following eight 64-bit words, in
hex:

H” = 6a0%e667f3bcc?08

(G - I y
H" = bbé7act584caa’3b

HY = 3c6ef372£e94F820
H® = a54££53a5f1d36f1
H = 510e527fades32d1
H" = 95b05688c2b3ebclf
HY = 1£83d9abfb41bdéb
HY = 5becd19137e2179

These words were obtained by taking the first sixty-four bits of the fractional parts of the square
roots of the first eight prime numbers.

53.6 SHA-512/t

“SHA-512/" is the general name for a 7-bit hash function based on SHA-312 whose output is
truncated to ¢ bits. Each hash function requires a distinet initial hash value. This section provides
a procedure for determining the initial value for SHA-512/ 1 for a given value of 7,

For SHA-512/1. t is any positive integer without a leading zero such that 1 < 512, and 1 1s not 384,
For example: 7 is 236, but not 0256, and “SHA-512/r" 1s "SHA-512/256" (an 11 character long
ASCII string), which is equivalent to 53 48 41 2D 35 31 32 2F 32 35 36 in hexadecimal.

The initial hash value for SHA-512/1, for a given value of 1. shall be generated by the SHA-512/1
IV Generation Function below.

SHA-312/ IV Generation Function
(begin:)

Denote A to be the initial hash value of SHA-512 as specified in Section 5.3.5 above.
Denote H' to be the initial hash value computed below.
H is the IV for SHA-512/1.

Fori=0tn7

{

1Y = B @ a5a5a5aSasasasas(in hex).
}

HY = SHA-512 (“SHA-512/r") using H as the IV, where 7 is the specific truncation value.

{end.)

i6

SHA-512/224 (r = 224) and SHA-512/256 (¢ = 256) arc approved hash algorithms. Other SHA-
512/t hash algorithms with different ¢ values may be specified in [SP 800-107] in the future as
the need arises. Below are the I'Vs for SHA-512/224 and SHA-512/256.

5.3.6.1 SHA-512/224
For SHA-312/224, the initial hash value, H”, shall consist of the following eight 64-bit words,
in hex:

H = BC3D37C819544DA2
H" = 13E1996689DCDAD6
HY = 1DFABTAE32FF9CH2
HY = 679DD514582F9FCF
H" = 0F6D2B697BD44DAS
HI" = 77E36r7304C48542
H®™ = 3F9DB5A86ALID3IECS
HY = 1112E6RD91D6S2A1

These words were obtained by exccuting the SHA-312/1 1V Generation Function with = 224,

5.3.6.2 SHA-512/258
For SHA-512/256, the initial hash value, H", shall consist of the fotlowing eight 64-bit words,
in hex:

H" = 22312194FC2BF72C
H" = 9p555FA3C84C64C2
H¥ = 2393BBEB6F53B1S1
H" = 963877195940ERBD
HY = 96¢283RE2A88RFFES
HY = BEBEI1E2553863992
HY = 2RO199FC2CR5BERA
H" = OER72DDCEICH2CAZ

These words were obtained by executing the SHA-31271 1V Generation Function with 1 = 256,

17

6. SECURE HASH ALGORITHMS

In the following sections, the hash algorithms are not described in ascending order of size. SHA-
256 is described before SHA-224 because the specification for SHA-224 is identical to SHA-
256, except that different initial hash values are used, and the final hash value is truncated to 224
bits for SHA-224. The same is true for SHA-512, SHA-384, SHA-512/224 and SHA-512/256,
except that the final hash value is truncated to 224 bits for SHA-512/224, 256 bits for SHA-
5127256 or 384 bits for SHA-384.

For each of the secure hash algorithms, there may exist aiternate computation methods that yield
identical results; one example is the alternative SHA-1 computation described in Sec. 6.1.3.
Such alternate methods may be implemented in conformance to this standard.

6.1 SHA-1

SHA-I may be used to hash a message, M, having a length of ¢ bits, where 0 < ¢ < 2% The
algorithm uses 1) a message schedule of eighty 32-bit words, 2) five working variables of 32 bits
each, and 3) a hash value of five 32-bit words. The final result of SHA-1 is a 160-bit message
digest.

The words of the message schedule are labeled Wy, W)..... Wy, The five working variables are

labeled a, b, ¢, d, and e. The words of the hash value are labeled /7", H",..., H\”, which will

hold the initial hash value, H”, replaced by cach successive intermediate hash value (after each
message block is processed), #”, and ending with the final hash value, #". SHA-1 also uses a
single temporary word, 7.

6.1.1 SHA-1 Preprocessing
I. Set the initial hash value. H", as specified in Sec. 5.3.1.

2. The message is padded and parsed as specified in Section 3.

6.1.2 SHA-1 Hash Computation

The SHA-1 hash computation uses functions and constants previously defined in Sec. 4.1.1 and
. C. . . 332
Sec. 4.2.1, respectively. Addition (+) is performed modulo 277,

" E Ay
Fach message block, M7, M™ | M™ is processed in order, using the following steps:

Fori=| to N\:

.
l
. Prepare the message schedule, { W)}
M 0<r<l13
W =
ROTLN W, ,®@W, ,®&W, _ , &W) 16<r<79
2. Initialize the five working variables, a, b, ¢, d. and e, with the (i-1)* hash value:
a=H{"
h=H
= HI
d=H!"
e=H™"
3. For=0to 79:
{
T =ROTI(a)+ f(h,c.dy+e+ K, + W
e=d
d=rc
c=ROTL(b)
h=ua
a=1T
}
4. Compute the /" intermediate hash value H":
HY =aq+ H™Y
Y =b+ IV
HY =c+ H™
HY =d v HIY
H =e+ H™
}

After repeating steps one through four a total of N times (i.e., after processing M), the resulting
160-bit message digest of the message, M, is

Hg*’)“H;*’)“_Hg-*’);iﬂy““H}”’

6.1.3 Alternate Method for Computing a SHA-1 Message Digest

The SHA-1 hash computation method described in Sec. 6.1.2 assumes that the message schedule
Wo. Wi...., Wy is implemented as an array of eighty 32-bit words. This is efficient from the
standpoint of the minimization of execution time, since the addresses of W,.s...., W14 in step (2)
of Sec. 6.1.2 are easily computed.

However, if memory is limited, an alternative is to regard { W} as a circular queue that may be
tmplemented using an array of sixteen 32-bit words, Wy, W,...., W,5. The alternate method that is
described in this section yields the same message digest as the SHA-T computation method
described in Sec. 6.1.2. Although this alternate method saves sixty-four 32-bit words of stora
itis likely to lengthen the execution time due to the increased complexity of the address
computations for the {1¥,} in step (3).

ge.

9
Pl

For this alternate SHA-1 method, let AMASK=0000000f (in hex). As in Sec. 6.1.1, addition is
performed modulo 27, Assuming that the preprocessing as described in Sec. 6.1.1 has been
performed, the processing of M is as follows:

For=1to N:
i
1
1. Fore=0to15;

f
1

W, =M
}

2. Initialize the five working variables, a, b, ¢, d. and e, with the (i-1)" hash vaiue:

{i—1
= H

bh=HI""
c=Hy"
d = [y
e=H™"

3. Forr=0to 79:

{
5 =1~ MASK

If 1 2z 16then

5
1

W\- = ROTL (W?\—-w.im.\f.-e.s.&’ @ I"V(S8 AMASE @D ;'1/}.\@';«\;,:;.*;\" @ W\—)

I}
5

T = ROTL (a)+ f.(b.e.d)+e+ K + W

e=d
d=c
¢ = ROTD"(H)
b=a
a=17T

4. Compute the /" intermediate hash value H*:

il

H =a+H™
H" =b+H™"
H =+ 1YY
H =d+H™
H' =e+ ™"

h

After repeating steps one through four a total of N times (i.e., after processing M), the resulting
160-bit message digest of the message, M, is

HY “_H; ¥

H

o

6.2 SHA-256

SHA-256 may be used to hash a message, M, having a length of ¢ bits, where 057 < 2% The
algorithm uses 1) a message schedule of sixty-four 32-bit words, 2} eight working variables of 32
bits each, and 3) a hash value of e¢ight 32-bit words. The final resuit of SHA-256 is a 256-bit
message digest.

The words of the message schedule are labeled Wy, Wy...., Wes. The eight working variables arc

labeled a, b, ¢. d, e, f. g. and h. The words of the hash value are labeled 7.7 1", . H,
R . v I . . .

which will hold the initial hash value, "), replaced by each successive intermediate hash value

(after each message block is processed). /', and ending with the final hash value, ™, SHA-
256 also uses two temporary words, 77 and 75.

6.2.1 SHA-256 Preprocessing
I. Set the initial hash value, #™), as specified in Sec. 5.3.3.

2. The message is padded and parsed as specified in Section 5.

6.2.2 SHA-256 Hash Computation

The SHA-256 hash computation uses functions and constants previously defined in Sec. 4.1.2
- .. . 12
and Sec. 4.2.2, respectively. Addition (+} is performed modulo 277,

- 2 (N
Each message block, MV, A% MY s processed in order, using the foliowing steps:
Fori=1to A:

[. Prepare the message schedule, { W}

M 0<r<l

[}

W =

! =iy

T W N W v oV D+ W, 16 <1563

2. Initialize the eight working variables, a, b, ¢, d, e, f. g, and h, with the (i-1)" hash
value:

— pruh
a=H;™"
h=HY
c=H
d=H{™
e=M1{"
f=H
tg = }[;’Alj
h=H{™"

3. Forr=0to 63:

{
T, =h+ Z:zs{i}(e)-{r Chie, f, @)+ KPP + W,
I, = Z({)zm’ (a) + Maj(a. b, c)
h=g
g=f
Sf=e
e=d+1T,
d=c
c=h
b=a
a=1 +1,
H

4. Compute the i intermediate hash value H;

H = a+ H™
HY =p+ "
HY =c+ H{™Y
HY =d+ H™"
H{" =e+ 1
HY =+
H =g+ H!™
HY = h+ Hy™
1
After repeating steps one through four a total of N times (i.c.. after processing M™). the resulting
256-bit message digest of the message, M, is
H A

e

6.3 SHA-224

SHA-224 may be used to hash a message, M, having a length of ¢ bits, where 0 < ¢ <2 The
[unction is defined in the exact same manner as SHA-256 (Section 6.2), with the following two
exceptions:

|. The initial hash value, H, shall be set as specified in Sec. 5.3.2; and

2
e

2. The 224-bit message digest is obtained by truncating the final hash value, H(N), to its
left-most 224 bits:

A |

H l]H(()

6.4 SHA-512

SHA-512 may be used to hash a message, M, having a length of ¢ bits, where 0 < ¢ <2"* The
algorithm uses 1) a message schedule of eighty 64-bit words, 2) eight working variables of 64
bits each, and 3) a hash value of eight 64-bit words. The final result of SHA-512 is a 512-hit
message digest.

The words of the message schedule are labeled 5, Wy,..., W5, The eight working variables are
labeled a, b, ¢, d, e, f. g. and h. The words of the hash value are labeled H)".H.... H",
which will hold the initial hash value, H"', replaced by cach successive intermediate hash value
(after each message block is processed), #”, and ending with the final hash value, . SHA-
512 also uses two temporary words, 7 and 7.

6.4.1 SHA-512 Preprocessing
1. Set the initial hash value, /%, as specified in Sec. 5.3.5.
2. The message 1s padded and parsed as specitied in Section 3.

6.4.2 SHA-512 Hash Computation

The SHA-512 hash computation uses functions and constants previously defined in Sec. 4.1.3
and Sec. 4.2.3, respectively. Addition (+) is performed modulo 2%,

N i 2 Ny
Each message block, M), M MY s processed in order, using the following steps:

Fori=1to N:

]
1

1. Prepare the message schedule, {,}:
M 0<r<l13

N

oW W el W 16<:<79

0 =16

2. Initialize the eight working variables, a. b, ¢. d, e, f. g. and h, with the (i-1)" hash
value:

24

-1
a=H™Y

b=H!"
¢ = H’EH)
(.v!’ = f}rg:—il
e=H{"
S=H
g=H"
h=HY

3. Forr=01079;

{
To=h+ 3 @)+ Chie. f.0)+ KI5 <1,
T, = Zim} (a) + Maj(a. b, ¢)
h=g
g=f
f=e
e=d+17,
d=c
c=h
b=u
a=1 +1,
}

4. Compute the i intermediate hash value H":

HY =a+ HI
H"=b+H!
HY =c+HI™
H =d+H!
H =e+ 1Y
H = f+pg"
H =g+ H/™"
HY =h+ HUY

After repeating steps one through four a total of NV times (i.e., after processing M), the resulting
512-bit message digest of the message, M, is

e T e

6.5 SHA-384

SHA-384 may be used to hash a message, M. having a length of # bits, where 0 < 7 < 2%* . The
algorithm is defined in the exact same manner as SHA-512 (Sec. 6.4), with the following two
exceptions:

1. The initial hash value. ", shall be set as specified in Sec. 5.3.4; and

2. The 384-bit message digest is obtained by truncating the final hash value, /Y, 1o its
feft-most 384 bits:

HY “H," i HH‘; " “Hi Y §|H§ # “H_i-‘”

6.6 SHA-512/224

SHA-512/224 may be used to hash a message. M. having a length of ¢ bits, where 0 < £ < 2'%,
The algorithm is defined in the exact same manner ag SHA-512 (Sec. 6.4), with the following
Lwo exceptions:

1. The initial hash value, /%, shall be set as specified in Sec. 5.3.6.1; and

2. The 224-bit message digest is obtained by truncating the final hash value. 7™, to its
left-most 224 bits.

6.7 SHA-512/256

SHA-512/256 may be used to hash a message, M, having a length of ¢ bits, where 0 < ¢ < 2!,
The algorithm is defined in the exact same manner as SHA-512 (8ec. 6.4), with the following
two exceptions:

I. The initial hash value, 2", shall be sct as specified in Sec. 5.3.6.2; and

2. The 256-bit message digest 1s obtained by truncating the final hash value, HY to its
left-most 236 bits.

26

7. TRUNCATION OF A MESSAGE DIGEST

Some application may require a hash function with a message digest length different than those
provided by the hash functions in this Standard. In such cases. a truncated message digest may be
used, whereby a hash function with a larger message digest length is applied to the data to be
hashed, and the resulting message digest is truncated by selecting an appropriate number of the
leftmost bits. For guidelines on choosing the length of the truncated message digest and
information about its security implications for the cryptographic application that uses it, see SP
800-107 {SP 800-1071.

APPENDIX A: Additional Information

A.1 Security of the Secure Hash Algorithms
The security of the five hash algorithms, SHA-1, SHA-224, SHA-256, SHA-384. SHA-512,
SHA-512/224 and SHA-512/256 is discussed in {SP 800-107].

A.2 Implementation Notes

Examples of SHA-1, SHA-224, SHA-236, SHA-384, SHA-512. SHA-512/224 and SHA-
512/256 are available at http://esrenisteovieroups/ST/oolkitvexamples.hunl,

A.3 Object Identifiers

Object tdentifiers (OIDs) for the SHA-{, SHA-224, SHA-256, SHA-384, SHA-512, SHA-
512/224 and SHA-512/256 algorithms are posted at

hitp/Yesremist.eoviaroups/STicrvplo anps infra‘esor/aloorithms himi,

APPENDIX B: REFERENCES

[FIPS 180-3] NIST, Federal Information Processing Standards Publication 180-3, Secure
Hash Standards (SHS). October 2008.

[SP 800-57] NIST Special Publication (SP) 860-57, Part 1. Recommendation for Key
Management: General, (Draft) May 201 1.

[SP 8G0-107] NIST Special Publication (§P) 800-107, Recommendation for Applications
Using Approved Hash Algorithms, (Revised). (Draft) September 2011,

APPENDIX C: Technical Changes from FIPS 180-3

In FIPS 186-3, padding was inserted before hash computation begins. FIPS 140-4
removed this restriction. Padding can be inserted before hash computation begins or at
any other time during the hash computation prior to processing the message block(s)
containing the padding.

FIPS 180-4 adds two additional aigorithms: SHA-512/224 and SHA-512/256 to the
Standard and the method for determining the initial value for SHA-512/1 for a given value
of t.

ERRATUM

The following change has been incorporated into FIPS 180-4, as of the date indicated in the
table.

DATE TYPE CHANGE I PAGE NUMBER
5/9/2014 | Editorial | Change 7 < 79" 10 " < 79" Page [0, Section 4.1.1, Line |

Tod

