Pt. 63, Subpt. HHHH, App. 8 APPENDIX B TO SUBPART HHHH OF PART 63—METHOD FOR THE DETERMINA-TION OF LOSS-ON-IGNITION #### 1.0 Purpose The purpose of this test is to determine the loss-on-ignition (LOI) of wet-formed fiber-glass mat. #### 2.0 Equipment 2.1 Scale sensitive to 0.001 gram (g). 2.2 Drying oven equipped with a means of constant temperature regulation and mechanical air convection. 2.3 Furnace designed to heat to at least 625 °C (1,157 °F) and controllable to ±25 °C (±45 °F). 2.4 Crucible, high form, 250 milliliter (mL). 2.5 Desiccator. 2.6 Pan balance (see Note 2 in 4.9) #### 3.0 Sample Collection Procedure 3.1 Obtain a sample of mat in accordance with Technical Association of the Pulp and Paper Industry (TAPPI) method 1607 "Sample Location." 3.2 Use a 5- to 10-g sample cut into pieces small enough to fit into the crucible. 3.3 Place the sample in the crucible. (NOTE 1: To test without the use of a crucible, see Note 2 after Section 4.8.) 3.4 Condition the sample in the furnace set at 105 ± 3 °C (221 ± 9 °F) for 5 minutes ± 30 seconds. ### 4.0 Procedure 4.1 Condition each sample by drying for 5 minutes ±30 seconds at 105 ±3 °C (22 ±5 °F). 4.2 Remove the test sample from the furnace and cool in the desiccator for 30 minutes in the standard atmosphere for testing glass textiles. 4.3 Place the empty crucible in the furnace at 625 ±25 °C (1.157 ±45 °F). After 30 minutes, remove and cool the crucible in the standard atmosphere (TAPPI method 1008) for 30 minutes. 4.4 Identify each crucible with respect to each test sample of mat. 4.5 Weigh the empty crucible to the nearest 0.001 g. Record this weight as the tare mass, T. mass, T. 4.6 Place the test sample in the crucible and weigh to the nearest 0.001 g. Record this weight as the initial mass. A. 4.7 Place the test sample and crucible in the furnace and ignite at 625 ±25 °C (1,157 ±45 °F). 4.8 After ignition for at least 30 minutes, remove the test sample and crucible from the furnace and cool in the desiccator for 30 minutes in the standard atmosphere (TAPPI method 1008). 4.9 Remove each crucible, and test each sample separately from the desiccator, and ### 40 CFR Ch. I (7-1-17 Edition) immediately weigh each sample to the nearest 0.001 g. Record this weight as the ignited mass, B. (NOTE 2: When it is known that no ash residue separates from the test sample during the weighing and igniting processes, you may weigh the sample separately without the crucible. When this occurs, the tare mass (T) equals zero. With appropriate care, you can dry and weigh a single piece of mat and place with tongs into the ignition oven on appropriate refractory supports. When the ignition time is over, remove the sample as an intact fragile web and weigh it directly on a pan balance.) #### 5.0 Calculation 5.1 Calculate the LOI for each sample as follows: ### $\% LOI = 100 \times (A-B)/(A-T)$ Where: A = initial mass of crucible and sample before ignition (g); B = mass of crucible and glass residue after ignition (g); and T = tare mass of crucible, (g) (see Note 2). 5.2 Report the percent LOI of the glass mat to the nearest 0.1 percent. #### 6.0 Precision The repeatability of this test method for measurements on adjacent specimens from the same sample of mat is better than 1 percent. #### Subpart IIII—National Emission Standards for Hazardous Air Pollutants: Surface Coating of Automobiles and Light-Duty Trucks SOURCE: 69 FR 22623, Apr. 26, 2004, unless otherwise noted, WHAT THIS SUBPART COVERS ## §63.3080 What is the purpose of this subpart? This subpart establishes national emission standards for hazardous air pollutants (NESHAP) for facilities which surface coat new automobile or new light-duty truck bodies or body parts for new automobiles or new light-duty trucks. This subpart also establishes NESHAP for facilities which surface coat new other motor vehicle bodies or body parts for new other motor vehicles which you choose to include in your affected source pursuant to §63.3082(c). This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations. [71 FR 76926, Dec. 22, 2006] ### § 63.3081 Am I subject to this subpart? (a) Except as provided in paragraph (c) of this section, the source category to which this subpart applies is automobile and light-duty truck surface coating. - (b) You are subject to this subpart if you own or operate a new, reconstructed, or existing affected source, as defined in §63.3082, that, except as noted in paragraph (b)(1) of this section, is located at a facility which applies topcoat to new automobile or new light-duty truck bodies or body parts for new automobiles or new light-duty trucks, and that is a major source, is located at a major source, or is part of a major source of emissions of hazardous air pollutants (HAP). You are subject to this subpart if you own or operate a new, reconstructed, or existing affected source, as defined in §63.3082, in which you choose to include, pursuant to §63.3082(c), any coating operations which apply coatings to new other motor vehicle bodies or body parts for new other motor vehicles; parts intended for use in new automobiles, new light-duty trucks, or new other motor vehicles; or aftermarket repair or replacement parts for automobiles, light-duty trucks, or other motor vehicles; and the affected source is located at a facility that is a major source, is located at a major source, or is part of a major source of emissions of HAP. A major source of HAP emissions is any stationary source or group of stationary sources located within a contiguous area and under common control that emits or has the potential to emit any single HAP at a rate of 9.07 megagrams (Mg) (10 tons) or more per year or any combination of HAP at a rate of 22.68 Mg (25 tons) or more per - (1) You are not subject to this subpart if you meet all of the criteria of paragraphs (b)(1)(i) through (iii) of this section: - (i) Your coating operation is located at a plastic or composites molding facility: (ii) All of the body parts topcoated at your facility for use in new automobiles or new light-duty trucks were fabricated (molded, stamped, formed, etc.) at your facility or at another plastic or composites molding facility which you own or operate, and none of the new vehicles in which these body parts are used are assembled at your facility; and (iii) You do not topcoat all of the body parts for any single new automobile or new light-duty truck at your facility. (2) [Reserved] - (c) This subpart does not apply to surface coating, surface preparation, or cleaning activities that meet the criteria of paragraph (c)(1) or (2) of this section. - (1) Surface coating subject to any other NESHAP in this part as of June 2004 except as provided in §63.3082(c). - (2) Surface coating that occurs during research or laboratory activities or that is part of janitorial, building, and facility maintenance operations, including maintenance spray booths used for painting production equipment, furniture, signage, etc., for use within the plant. [57 FR 61992, Dec. 29, 1992, as amended at 72 FR 20233, Apr. 24, 2007] ### §63.3082 What parts of my plant does this subpart cover? - (a) This subpart applies to each new, reconstructed, and existing affected - (b) The affected source is the collection of all of the items listed in paragraphs (b)(1) through (4) of this section that are used for surface coating of new automobile or new light-duty truck bodies, or body parts for new automobiles or new light-duty trucks: - (1) All coating operations as defined in § 63.3176. - (2) All storage containers and mixing vessels in which coatings, thinners, and cleaning materials are stored or mixed. - (3) All manual and automated equipment and containers used for conveying coatings, thinners, and cleaning materials. - (4) All storage containers and all manual and automated equipment and containers used for conveying waste materials generated by a coating operation. (c) In addition, you may choose to include in your affected source, and thereby make subject to the requirements of this subpart, any coating operations, as defined in §63.3176, which would otherwise be subject to the National Emission Standards for Hazardous Air Pollutants for Surface Coating of Miscellaneous Metal Parts and Products (subpart MMMM of this part) or the National Emission Standards for Hazardous Air Pollutants for Surface Coating of Plastic Parts and Products (subpart PPPP of this part) which apply coatings to new other motor vehicle bodies or body parts for new other motor vehicles, parts intended for use in new automobiles, new light-duty trucks, or new other motor vehicles, or aftermarket repair or replacement parts for automobiles, light-duty trucks, or other motor vehicles. (d) For all coating operations which you choose to add to your affected source pursuant to paragraph (c) of this section: (1) All associated storage containers and mixing vessels in which coatings, thinners, and cleaning materials are stored or mixed; manual and automated equipment and containers used for conveying coatings, thinners, and cleaning materials; and storage containers and manual and automated equipment and containers used for conveying waste materials are also included in your affected source and are subject to the requirements of this subpart. (2) All cleaning and purging of equipment associated with the added surface coating operations is subject to the requirements of this subpart. (3) You must identify and describe all additions to the affected source made pursuant to paragraph (c) of this section in the initial notification required in §63.3110(b). (e) An affected source is a new affected source if: (1) You commenced its construction after December 24, 2002; and (2) The construction is of a completely new automobile and light-duty truck assembly plant, automobile and light-duty truck paint shop, automobile and light-duty truck topcoat
operation, other motor vehicle assembly plant, other motor vehicle paint shop, or other motor vehicle topcoat operation where previously no automobile and light-duty truck assembly plant, automobile and light-duty truck assembly paint shop, or automobile and light-duty truck assembly topcoat operation had existed; and (i) No other motor vehicle assembly plant, other motor vehicle paint shop, or other motor vehicle topcoat operation had existed previously; or (ii) No previously existing other motor vehicle assembly plant, other motor vehicle paint shop, or other motor vehicle topcoat operation is subject to this subpart; or (iii) If the facility was previously not a major source for HAP, no previously existing other motor vehicle assembly plant, other motor vehicle paint shop, or other motor vehicle topcoat operation is made part of the affected source under this subpart. (f) An affected source is reconstructed if its paint shop undergoes replacement of components to such an extent that: The fixed capital cost of the new components exceeded 50 percent of the fixed capital cost that would be required to construct a new paint shop; (2) It was technologically and economically feasible for the reconstructed source to meet the relevant standards established by the Administrator pursuant to section 112 of the Clean Air Act (CAA). (g) An affected source is existing if it is not new or reconstructed. [69 FR 22623, Apr. 26, 2004, as amended at 71 FR 76926, Dec. 22, 2006] ## §63.3083 When do I have to comply with this subpart? The date by which you must comply with this subpart is called the compliance date. The compliance date for each type of affected source is specified in paragraphs (a) through (c) of this section. The compliance date begins the initial compliance period during which you conduct the initial compliance demonstrations described in §§ 63.3150, 63.3160, and 63.3170. (a) For a new or reconstructed affected source, the compliance date is the applicable date in paragraph (a)(1) or (2) of this section: - (1) If the initial startup of your new or reconstructed affected source is before June 25, 2004, the compliance date is June 25, 2004. - (2) If the initial startup of your new or reconstructed affected source occurs after June 25, 2004, the compliance date is the date of initial startup of your affected source. - (b) For an existing affected source, the compliance date is April 26, 2007. - (c) For an area source that increases its emissions or its potential to emit such that it becomes a major source of HAP emissions, the compliance date is specified in paragraphs (c)(1) and (2) of this section. - (1) For any portion of the source that becomes a new or reconstructed affected source subject to this subpart, the compliance date is the date of initial startup of the affected source or June 25, 2004, whichever is later. - (2) For any portion of the source that becomes an existing affected source subject to this subpart, the compliance date is the date 1 year after the area source becomes a major source or April 26, 2007, whichever is later. - (d) You must meet the notification requirements in §63.3110 according to the dates specified in that section and in subpart A of this part. Some of the notifications must be submitted before the compliance dates described in paragraphs (a) through (c) of this section. #### **EMISSION LIMITATIONS** # §63.3090 What emission limits must I meet for a new or reconstructed affected source? (a) Except as provided in paragraph (b) of this section, you must limit combined organic HAP emissions to the atmosphere from electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) to no more than 0.036 kilogram (kg)/liter (0.30 pound (lb)/gallon (gal)) of coating solids deposited during each month, de- termined according to the requirements in §63.3161. - (b) If you meet the operating limits of §63.3092(a) or (b), you must either meet the emission limits of paragraph (a) of this section or limit combined organic HAP emissions to the atmosphere from primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) to no more than 0.060 kg/liter (0.50 lb/gal) of applied coating solids used during each month, determined according to the requirements in §63.3171. If you do not have an electrodeposition primer system, you must limit combined organic HAP emissions to the atmosphere from primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) to no more than 0.060 kg/liter (0.50 lb/gal) of applied coating solids used during each month, determined according to the requirements in §63.3171. - (c) You must limit average organic HAP emissions from all adhesive and sealer materials other than materials used as components of glass bonding systems to no more than 0.010 kg/kg (lb/lb) of adhesive and sealer material used during each month. - (d) You must limit average organic HAP emissions from all deadener materials to no more than 0.010 kg/kg (lb/lb) of deadener material used during each month - (e) For coatings and thinners used in coating operations added to the affected source pursuant to §63.3082(c): - (1) Adhesive and sealer materials that are not components of glass bonding systems are subject to and must be included in your demonstration of compliance for paragraph (c) of this section. - (2) Deadener materials are subject to and must be included in your demonstration of compliance for paragraph (d) of this section. - (3) All other coatings and thinners are subject to and must be included in your demonstration of compliance for paragraphs (a) or (b) of this section. - (f) If your facility has multiple paint lines (e.g., two or more totally distinct paint lines each serving a distinct assembly line, or a facility with two or more paint lines sharing the same paint kitchen or mix room), then for the operations addressed in paragraphs (a) and (b) of this section: - (1) You may choose to use a single grouping under paragraph (a) of this section for all of your electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations. - (2) You may choose to use a single grouping under paragraph (b) of this section for all of your primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations as long as each of your electrodeposition primer systems meets the operating limits of §63.3092(a) or (b). - (3) You may choose to use one or more groupings under paragraph (a) of this section for the electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations from one or more of your paint lines; and one or more groupings under paragraph (b) of this section for the primer-surfacer. topcoat, final repair, glass bonding primer, and glass bonding adhesive operations from the remainder of your paint lines, as long as each electrodeposition primer system associated with each paint line you include in a grouping under paragraph (b) of this section meets the operating limits of §63.3092(a) or (b). For example, if your facility has three paint lines, you may choose to use one grouping under paragraph (a) of this section for two of the paint lines; and a separate grouping under paragraph (b) of this section for the third paint line, as long as the electrodeposition primer system associated with the paint line you include in the grouping under paragraph (b) of this section meets the operating limits of §63.3092(a) or (b). Alternatively, you may choose to use one grouping for two of the paint lines and a separate grouping of the same type for the third paint line. Again, each electrodeposition primer system associated with each paint line you include in a grouping under paragraph (b) of this section must meet the operating limits of §63.3092(a) or (b). (4) You may choose to consider the electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations from each of your paint lines as a separate grouping under either paragraph (a) or paragraph (b) of this section. The electrodeposition primer system associated with each paint line you choose to consider in a grouping under paragraph (b) of this section must meet the operating limits of §63.3092(a) or (b). For example, if your facility has two paint lines, you may choose to use the grouping under paragraph (a) of this section for one paint line and the grouping under paragraph. # § 63.3091 What emission limits must I meet for an existing affected source? graph (b) of this section for the other paint line - (a) Except as provided in paragraph (b) of this section, you must limit combined organic HAP emissions to the atmosphere from electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) to no more than 0.072 kg/liter (0.60 lb/gal) of coating solids
deposited during each month, determined according to the requirements in §63.3161. - (b) If you meet the operating limits of §63.3092(a) or (b), you must either meet the emission limits of paragraph (a) of this section or limit combined organic HAP emissions to the atmosphere from primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) to no more than 0.132 kg/liter (1.10 lb/gal) of coating solids deposited during each month, determined according to the requirements in §63.3171. If you do not have an electrodeposition primer system, you must limit combined organic HAP emissions to the atmosphere from primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) to no more than 0.132 kg/liter (1.10 lb/gal) of coating solids deposited during each month, determined according to the requirements in §63.3171. - (c) You must limit average organic HAP emissions from all adhesive and sealer materials other than materials used as components of glass bonding systems to no more than 0.010 kg/kg (lb/lb) of adhesive and sealer material used during each month. - (d) You must limit average organic HAP emissions from all deadener materials to no more than 0.010 kg/kg (lb/lb) of deadener material used during each month. - (e) For coatings and thinners used in coating operations added to the affected source pursuant to §63.3082(c): - (1) Adhesive and sealer materials that are not components of glass bonding systems are subject to and must be included in your demonstration of compliance for paragraph (c) of this section. - (2) Deadener materials are subject to and must be included in your demonstration of compliance for paragraph (d) of this section. - (3) All other coatings and thinners are subject to and must be included in your demonstration of compliance for paragraphs (a) or (b) of this section. - (f) If your facility has multiple paint lines (e.g., two or more totally distinct paint lines each serving a distinct assembly line, or a facility with two or more paint lines sharing the same paint kitchen or mix room), then for the operations addressed in paragraphs (a) and (b) of this section: - (1) You may choose to use a single grouping under paragraph (a) of this section for all of your electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations. - (2) You may choose to use a single grouping under paragraph (b) of this section for all of your primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations, as long as each of your electrodeposition primer systems meets the operating limits of \$63.3092(a) or (b). - (3) You may choose to use one or more groupings under paragraph (a) of this section for the electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations from one or more of your paint lines; and one or more groupings under paragraph (b) of this section for the primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations from the remainder of your long as each paint lines, as electrodeposition primer system associated with each paint line you include in a grouping under paragraph (b) of this section meets the operating limits of §63.3092(a) or (b). For example, if your facility has three paint lines, you may choose to use one grouping under paragraph (a) of this section for two of the paint lines and a separate grouping under paragraph (b) of this section for the third paint line, as long as the electrodeposition primer system associated with the paint line you include in the grouping under paragraph (b) of this section meets the operating limits of §63.3092(a) or (b). Alternatively, you may choose to use one grouping for two of the paint lines and a separate grouping of the same type for the third paint line. Again, each electrodeposition primer system associated with each paint line you include in a grouping under paragraph (b) of this section must meet the operating limits of §63.3092(a) or (b). (4) You may choose to consider the electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations from each of your paint lines as a separate grouping under either paragraph (a) or paragraph (b) of this section. The electrodeposition primer system associated with each paint line you choose to consider in a grouping under paragraph (b) of this section must meet the operating limits of §63.3092(a) or (b). For example, if your facility has two paint lines, you may choose to use the grouping under paragraph (a) of this section for one paint line and the grouping under paragraph (b) of this section for the other paint line. § 63.3092 How must I control emissions from my electrodeposition primer system if I want to comply with the combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive emission limit? If your electrodeposition primer system meets the requirements of either paragraph (a) or (b) of this section, you may choose to comply with the emission limits of §63.3090(b) or §63.3091(b) instead of the emission limits of §63.3090(a) or §63.3091(a). (a) Each individual material added to the electrodeposition primer system contains no more than: (1) 1.0 percent by weight of any organic HAP; and (2) 0.10 percent by weight of any organic HAP which is an Occupational Safety and Health Administration (OSHA)-defined carcinogen as specified in 29 CFR 1910.1200(d)(4). (b) Emissions from all bake ovens used to cure electrodeposition primers must be captured and ducted to a control device having a destruction or removal efficiency of at least 95 percent. ## § 63.3093 What operating limits must I meet? (a) You are not required to meet any operating limits for any coating operation(s) without add-on controls. (b) Except as provided in paragraph (d) of this section, for any controlled coating operation(s), you must meet the operating limits specified in Table 1 to this subpart. These operating lim- its apply to the emission capture and add-on control systems on the coating operation(s) for which you use this option, and you must establish the operating limits during the performance test according to the requirements in §63.3167. You must meet the operating limits at all times after you establish them. (c) If you choose to meet the emission limitations of §63.3092(b) and the emission limits of §63.3090(b) or §63.3091(b), then except as provided in paragraph (d) of this section, you must operate the capture system and add-on control device used to capture and control emissions from your electrodeposition primer bake oven(s) so that they meet the operating limits specified in Table 1 to this subpart. (d) If you use an add-on control device other than those listed in Table 1 to this subpart, or wish to monitor an alternative parameter and comply with a different operating limit, you must apply to the Administrator for approval of alternative monitoring under §63.8(f). ## §63.3094 What work practice standards must I meet? (a) [Reserved] (b) You must develop and implement a work practice plan to minimize organic HAP emissions from the storage, mixing, and conveying of coatings, thinners, and cleaning materials used in, and waste materials generated by, all coating operations for which emission limits are established under §63.3090(a) through (d) or §63.3091(a) through (d). The plan must specify practices and procedures to ensure that, at a minimum, the elements specified in paragraphs (b)(1) through (5) of this section are implemented. (1) All organic-HAP-containing coatings, thinners, cleaning materials, and waste materials must be stored in closed containers. (2) The risk of spills of organic-HAPcontaining coatings, thinners, cleaning materials, and waste materials must be minimized. (3) Organic-HAP-containing coatings, thinners, cleaning materials, and waste materials must be conveyed from one location to another in closed containers or pipes. - (4) Mixing vessels, other than day tanks equipped with continuous agitation systems, which contain organic-HAP-containing coatings and other materials must be closed except when adding to, removing, or mixing the contents. - (5) Emissions of organic HAP must be minimized during cleaning of storage, mixing, and conveying equipment. - (c) You must develop and implement a work practice plan to minimize organic HAP emissions from cleaning and from purging of equipment associated with all coating operations for which emission limits are established under \$63.3090(a) through (d) or \$63.3091(a) through (d). - (1) The plan shall, at a minimum, address each of the operations listed in paragraphs (c)(1)(i) through (viii) of this section in which you use organic-HAP-containing materials or in which there is a potential for emission of organic HAP. - (i) The plan must address vehicle body wipe emissions through one or more of the techniques listed in paragraphs (c)(1)(i)(A) through (E) of this section, or an approved alternative. - (A) Use of solvent-moistened wipes. - (B) Keeping solvent containers closed when not in use. - (C) Keeping wipe disposal/recovery containers closed when not in use. - (D) Use of tack-wipes. - (E) Use of solvents containing less than 1 percent organic HAP by weight. - (ii) The plan must address coating line purging emissions through one or more of
the techniques listed in paragraphs (c)(1)(ii)(A) through (D) of this section, or an approved alternative. - (A) Air/solvent push-out. - (B) Capture and reclaim or recovery of purge materials (excluding applicator nozzles/tips). - (C) Block painting to the maximum extent feasible. - (D) Use of low-HAP or no-HAP solvents for purge. - (iii) The plan must address emissions from flushing of coating systems through one or more of the techniques listed in paragraphs (c)(1)(iii)(A) through (D) of this section, or an approved alternative. - (A) Keeping solvent tanks closed. - (B) Recovering and recycling solvents. - (C) Keeping recovered/recycled solvent tanks closed. - (D) Use of low-HAP or no-HAP solvents. - (iv) The plan must address emissions from cleaning of spray booth grates through one or more of the techniques listed in paragraphs (c)(1)(iv)(A) through (E) of this section, or an approved alternative. - (A) Controlled burn-off. - (B) Rinsing with high-pressure water (in place). - (C) Rinsing with high-pressure water (off line). - (D) Use of spray-on masking or other type of liquid masking. - (E) Use of low-HAP or no-HAP content cleaners. - (v) The plan must address emissions from cleaning of spray booth walls through one or more of the techniques listed in paragraphs (c)(1)(v)(A) through (E) of this section, or an approved alternative. - (A) Use of masking materials (contact paper, plastic sheet, or other similar type of material). - (B) Use of spray-on masking. - (C) Use of rags and manual wipes instead of spray application when cleaning walls. - (D) Use of low-HAP or no-HAP content cleaners. - (E) Controlled access to cleaning solvents. - (vi) The plan must address emissions from cleaning of spray booth equipment through one or more of the techniques listed in paragraphs (c)(1)(vi)(A) through (E) of this section, or an approved alternative. - (A) Use of covers on equipment (disposable or reusable). - (B) Use of parts cleaners (off-line submersion cleaning). - (C) Use of spray-on masking or other protective coatings. - (D) Use of low-HAP or no-HAP content cleaners. - (E) Controlled access to cleaning solvents. - (vii) The plan must address emissions from cleaning of external spray booth areas through one or more of the techniques listed in paragraphs (c)(1)(vii)(A) through (F) of this section, or an approved alternative. - (A) Use of removable floor coverings (paper, foil, plastic, or similar type of material). - (B) Use of manual and/or mechanical scrubbers, rags, or wipes instead of spray application. - (C) Use of shoe cleaners to eliminate coating track-out from spray booths. - (D) Use of booties or shoe wraps. - (E) Use of low-HAP or no-HAP content cleaners. - (F) Controlled access to cleaning solvents. - (viii) The plan must address emissions from housekeeping measures not addressed in paragraphs (c)(1)(i) through (vii) of this section through one or more of the techniques listed in paragraphs (c)(1)(viii)(A) through (C) of this section, or an approved alternative. - (A) Keeping solvent-laden articles (cloths, paper, plastic, rags, wipes, and similar items) in covered containers when not in use. - (B) Storing new and used solvents in closed containers. - (C) Transferring of solvents in a manner to minimize the risk of spills. - (2) Notwithstanding the requirements of paragraphs (c)(1)(i) through (viii) of this section, if the type of coatings used in any facility with surface coating operations subject to the requirements of this section are of such a nature that the need for one or more of the practices specified under paragraphs (c)(1)(i) through (viii) is eliminated, then the plan may include approved alternative or equivalent measures that are applicable or necessary during cleaning of storage, conveying, and application equipment. - (d) As provided in §63.6(g), we the Environmental Protection Agency (EPA), may choose to grant you permission to use an alternative to the work practice standards in this section. - (e) The work practice plans developed in accordance with paragraphs (b) and (c) of this section are not required to be incorporated in your title V permit. Any revisions to the work practice plans developed in accordance with paragraphs (b) and (c) of this section do not constitute revisions to your title V permit. (f) Copies of the current work practice plans developed in accordance with paragraphs (b) and (c) of this section, as well as plans developed within the preceding 5 years must be available onsite for inspection and copying by the permitting authority. GENERAL COMPLIANCE REQUIREMENTS # § 63.3100 What are my general requirements for complying with this subpart? - (a) You must be in compliance with the emission limitations in §§63.3090 and 63.3091 at all times, as determined on a monthly basis. - (b) The coating operations must be in compliance with the operating limits for emission capture systems and addon control devices required by \$63.3093 at all times except during periods of startup, shutdown, and malfunction. - (c) You must be in compliance with the work practice standards in §63.3094 at all times. - (d) You must always operate and maintain your affected source including all air pollution control and monitoring equipment you use for purposes of complying with this subpart according to the provisions in §63.6(e)(1)(i). - (e) You must maintain a log detailing the operation and maintenance of the emission capture systems, add-on control devices, and continuous parameter monitoring systems (CPMS) during the period between the compliance date specified for your affected source in §63.3083 and the date when the initial emission capture system and add-on control device performance tests have been completed, as specified in §63.3160. - (f) If your affected source uses emission capture systems and add-on control devices, you must develop a written startup, shutdown, and malfunction plan (SSMP) according to the provisions in §63.6(e)(3). The SSMP must address startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control devices. [69 FR 22623, Apr. 26, 2004, as amended at 71 FR 20464, Apr. 20, 2006] ### §63.3101 What parts of the General Provisions apply to me? Table 2 to this subpart shows which parts of the General Provisions in \$663.1 through 63.15 apply to you. NOTIFICATIONS, REPORTS, AND RECORDS ### §63.3110 What notifications must I submit? (a) General. You must submit the notifications in §§63.7(b) and (c), 63.8(f)(4), and 63.9(b) through (e) and (h) that apply to you by the dates specified in those sections. except as provided in paragraphs (b) and (c) of this section. (b) You must submit the Initial Notification required by §63.9(b) for a new or reconstructed affected source no later than 120 days after initial startup or 120 days after June 25, 2004, whichever is later. For an existing affected source, you must submit the Initial Notification no later than 1 year after April 26, 2004. Existing sources that have previously submitted notifications of applicability of this rule pursuant to §112(j) of the CAA are not required to submit an Initial Notification under §63.9(b) except to identify and describe all additions to the affected source made pursuant to §63.3082(c). If you elect to include the surface coating of new other motor vehicle bodies, body parts for new other motor vehicles, parts for new other motor vehicles, or aftermarket repair or replacement parts for other motor vehicles in your affected source pursuant to §63.3082(c) and your affected source has an initial startup before February 20, 2007, then you must submit an Initial Notification of this election no later than 120 days after initial startup or February 20, 2007, whichever is later. (c) Notification of compliance status. If you have an existing source, you must submit the Notification of Compliance Status required by \$63.9(h) no later than 30 days following the end of the initial compliance period described in \$63.3160. If you have a new source, you must submit the Notification of Compliance Status required by \$63.9(h) no later than 60 days after the first day of the first full month following completion of all applicable performance tests. The Notification of Compliance Status must contain the information specified in paragraphs (c)(1) through (12) of this section and in §63.9(h). (1) Company name and address. (2) Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report. (3) Date of the report and beginning and ending dates of the reporting period. The reporting period is the initial compliance period described in §63.3160 that applies to your affected source. - (4) Identification of the compliance option specified in §63.3090(a) or (b) or §63.3091(a) or (b) that you used for electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) in the affected source during the initial compliance period. - (5) Statement of whether or not the affected source achieved the emission limitations for the initial compliance period. - (6) If you had a deviation, include the information in paragraphs (c)(6)(i) and (ii) of this section. - (i) A description and statement of the cause of the deviation. - (ii) If you failed to meet any of the applicable emission limits in §63.3090 or §63.3091, include all the calculations you used to determine the applicable emission rate or applicable average organic HAP content for the emission limit(s) that you failed to meet. You do not need to submit information provided by the materials suppliers or manufacturers, or test
reports. - (7) All data and calculations used to determine the monthly average mass of organic HAP emitted per volume of applied coating solids from: - (i) The combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) if you were eligible for and chose to comply with the emission limits of §63.3090(b) or §63.3091(b); or (ii) The combined electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c). (8) All data and calculations used to determine compliance with the separate limits for electrodeposition primer in §63.3092(a) or (b) if you were eligible for and chose to comply with the emission limits of §63.3090(b) or §63.3091(b). (9) All data and calculations used to determine the monthly mass average HAP content of materials subject to the emission limits of §63.3090(c) or (d) or the emission limits of §63.3091(c) or (d). (10) All data and calculations used to determine the transfer efficiency for primer-surfacer and topcoat coatings, and for all coatings, except for deadener and for adhesive and sealer that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c). (11) You must include the information specified in paragraphs (c)(11)(i) through (iii) of this section. (i) For each emission capture system, a summary of the data and copies of the calculations supporting the determination that the emission capture system is a permanent total enclosure (PTE) or a measurement of the emission capture system efficiency. Include a description of the procedure followed for measuring capture efficiency, summaries of any capture efficiency tests conducted, and any calculations supporting the capture efficiency determination. If you use the data quality objective (DQO) or lower confidence limit (LCL) approach, you must also include the statistical calculations to show you meet the DQO or LCL criteria in appendix A to subpart KK of this part. You do not need to submit complete test reports. (ii) A summary of the results of each add-on control device performance test. You do not need to submit complete test reports unless requested. (iii) A list of each emission capture system's and add-on control device's operating limits and a summary of the data used to calculate those limits. (12) A statement of whether or not you developed and implemented the work practice plans required by §63.3094(b) and (c). [69 FR 22623, Apr. 26, 2004, as amended at 71 FR 76927, Dec. 22, 2006] ### §63.3120 What reports must I submit? (a) Semiannual compliance reports. You must submit semiannual compliance reports for each affected source according to the requirements of paragraphs (a)(1) through (9) of this section. The semiannual compliance reporting requirements may be satisfied by reports required under other parts of the CAA, as specified in paragraph (a)(2) of this section. (1) Dates. Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must prepare and submit each semiannual compliance report according to the dates specified in paragraphs (a)(1)(i) through (iv) of this section. (i) The first semiannual compliance report must cover the first semiannual reporting period which begins the day after the end of the initial compliance period described in §63.3160 that applies to your affected source and ends on June 30 or December 31, whichever occurs first following the end of the initial compliance period. (ii) Each subsequent semiannual compliance report must cover the subsequent semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31. (iii) Each semiannual compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period. (iv) For each affected source that is subject to permitting regulations pursuant to 40 CFR part 70 or 40 CFR part 71, and if the permitting authority has established dates for submitting semi-annual reports pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the date specified in paragraph (a)(1)(iii) of this section. - (2) Inclusion with title V report. If you have obtained a title V operating permit pursuant to 40 CFR part 70 or 40 CFR part 71, you must report all deviations as defined in this subpart in the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A). If you submit a semiannual compliance report pursuant to this section along with, or as part of, the semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), and the semiannual compliance report includes all required information concerning deviations from any emission limit, operating limit, or work practice in this subpart, its submission shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a semiannual compliance report shall not otherwise affect any obligation you may have to report deviations from permit requirements to the permitting authority. - (3) General requirements. The semiannual compliance report must contain the information specified in paragraphs (a)(3)(i) through (iv) of this section, and the information specified in paragraphs (a)(4) through (9) and (c)(1) of this section that are applicable to your affected source. - (i) Company name and address. - (ii) Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report. - (iii) Date of report and beginning and ending dates of the reporting period. The reporting period is the 6-month period ending on June 30 or December 31. - (iv) Identification of the compliance option specified in §63.3090(b) or used §63.3091(b) that you electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) in the affected source during the initial compliance period. - (4) No deviations. If there were no deviations from the emission limitations, operating limits, or work practices in §§ 63.3090, 63.3091, 63.3092, 63.3093, and 63.3094 that apply to you, the semiannual compliance report must include a statement that there were no deviations from the emission limitations during the reporting period. If you used control devices to comply with the emission limits, and there were no periods during which the CPMS were out of control as specified in §63.8(c)(7), the semiannual compliance report must include a statement that there were no periods during which the CPMS were out of control during the reporting period. - (5) Deviations: adhesive, sealer, and deadener. If there was a deviation from the applicable emission limits in §63.3090(c) and (d) or §63.3091(c) and (d), the semiannual compliance report must contain the information in paragraphs (a)(5)(i) through (iv) of this section. - (i) The beginning and ending dates of each month during which the monthly average organic HAP content exceeded the applicable emission limit in §63.3090(c) and (d) or §63.3091(c) and (d). - (ii) The volume and organic HAP content of each material used that is subject to the applicable organic HAP content limit. - (iii) The calculation used to determine the average monthly organic HAP content for the month in which the deviation occurred. - (iv) The reason for the deviation. - combined Deviations: (6)electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer and glass bonding adhesive, or combined primer-surfacer, topcoat, final repair. glass bonding primer, and glass bonding adhesive plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to \$63.3082(c). If there was a deviation from the applicable emission limits in §63.3090(a) or (b) or §63.3091(a) or (b), the semiannual compliance report must contain the information in paragraphs (a)(6)(i) through (xiv) of this section. (i) The beginning and ending dates of each month during which the monthly organic HAP emission rate from combined electrodeposition primer, primersurfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive plus all coatings and thinners. except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) exceeded the applicable emission limit in \$63.3090(a) or §63.3091(a); or the monthly organic HAP emission rate from combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations
added to the affected source pursuant to §63.3082(c) exceeded the applicable emission limit in §63.3090(b) §63.3091(b), (ii) The calculation used to determine the monthly organic HAP emission rate in accordance with \$63.3161 or \$63.3171. You do not need to submit the background data supporting these calculations, for example information provided by materials suppliers or manufacturers, or test reports. (iii) The date and time that any malfunctions of the capture system or addon control devices used to control emissions from these operations started and stopped. (iv) A brief description of the CPMS.(v) The date of the latest CPMS certification or audit. (vi) The date and time that each CPMS was inoperative, except for zero (low-level) and high-level checks. (vii) The date and time period that each CPMS was out of control, including the information in §63.8(c)(8). (viii) The date and time period of each deviation from an operating limit in Table 1 to this subpart: date and time period of each bypass of an add-on control device; and whether each deviation occurred during a period of startup, shutdown, or malfunction or during another period. (ix) A summary of the total duration and the percent of the total source operating time of the deviations from each operating limit in Table 1 to this subpart and the bypass of each add-on control device during the semiannual reporting period. (x) A breakdown of the total duration of the deviations from each operating limit in Table 1 to this subpart and bypasses of each add-on control device during the semiannual reporting period into those that were due to startup, shutdown, control equipment problems, process problems, other known causes, and other unknown causes. (xi) A summary of the total duration and the percent of the total source operating time of the downtime for each CPMS during the semiannual reporting period. (xii) A description of any changes in the CPMS, coating operation, emission capture system, or add-on control devices since the last semiannual reporting period. (xiii) For each deviation from the work practice standards, a description of the deviation, the date and time period of the deviation, and the actions you took to correct the deviation. (xiv) A statement of the cause of each deviation. (7) Deviations: separate electrodeposition primer organic HAP content limit. If you used the separate electrodeposition primer organic HAP content limits in §63.3092(a), and there was a deviation from these limits, the semiannual compliance report must contain the information in paragraphs (a)(7)(i) through (iii) of this section. (i) Identification of each material used that deviated from the emission limit, and the dates and time periods each was used. (ii) The determination of mass fraction of each organic HAP for each material identified in paragraph (a)(7)(i) of this section. You do not need to submit background data supporting this calculation, for example, information provided by material suppliers or manufacturers, or test reports. (iii) A statement of the cause of each deviation. - (8) Deviations: separate electrodeposition primer bake oven capture and control limitations. If you used the separate electrodeposition primer bake oven capture and control limitations in §63.3092(b), and there was a deviation from these limitations, the semiannual compliance report must contain the information in paragraphs (a)(8)(i) through (xii) of this section. - (i) The beginning and ending dates of each month during which there was a deviation from the separate electrodeposition primer bake oven capture and control limitations in §63.3092(b). - (ii) The date and time that any malfunctions of the capture systems or control devices used to control emissions from the electrodeposition primer bake oven started and stopped. - (iii) A brief description of the CPMS.(iv) The date of the latest CPMS cer- - tification or audit. (v) The date and time that each - CPMS was inoperative, except for zero (low-level) and high-level checks. (vi) The date, time, and duration that - (vi) The date, time, and duration that each CPMS was out of control, including the information in §63.8(c)(8). - (vii) The date and time period of each deviation from an operating limit in Table 1 to this subpart; date and time period of each bypass of an add-on control device; and whether each deviation occurred during a period of startup. shutdown, or malfunction or during another period. - (viii) A summary of the total duration and the percent of the total source operating time of the deviations from each operating limit in Table 1 to this subpart and the bypasses of each addon control device during the semi-annual reporting period. - (ix) A breakdown of the total duration of the deviations from each operating limit in Table 1 to this subpart and bypasses of each add-on control device during the semiannual reporting period into those that were due to startup, shutdown, control equipment problems, process problems, other known causes, and other unknown causes. - (x) A summary of the total duration and the percent of the total source operating time of the downtime for each - CPMS during the semiannual reporting period. - (xi) A description of any changes in the CPMS, coating operation, emission capture system, or add-on control devices since the last semiannual reporting period. - (xii) A statement of the cause of each deviation. - (9) Deviations: work practice plans. If there was a deviation from an applicable work practice plan developed in accordance with §63.3094(b) or (c), the semiannual compliance report must contain the information in paragraphs (a)(9)(i) through (iii) of this section. - (i) The time period during which each deviation occurred. - (ii) The nature of each deviation. - (iii) The corrective action(s) taken to bring the applicable work practices into compliance with the work practice plan. - (b) Performance test reports. If you use add-on control devices, you must submit reports of performance test results for emission capture systems and add-on control devices no later than 60 days after completing the tests as specified in §63.10(d)(2). You must submit reports of transfer efficiency tests no later than 60 days after completing the tests as specified in §63.10(d)(2). - (c) Startup, shutdown, and malfunction reports. If you used add-on control devices and you had a startup, shutdown, or malfunction during the semiannual reporting period, you must submit the reports specified in paragraphs (c)(1) and (2) of this section. - (1) If your actions were consistent with your SSMP, you must include the information specified in §63.10(d) in the semiannual compliance report required by paragraph (a) of this section. - (2) If your actions were not consistent with your SSMP, you must submit an immediate startup, shutdown, and malfunction report as described in paragraphs (c)(2)(i) and (ii) of this section. - (i) You must describe the actions taken during the event in a report delivered by facsimile, telephone, or other means to the Administrator within 2 working days after starting actions that are inconsistent with the plan. (ii) You must submit a letter to the Administrator within 7 working days after the end of the event, unless you have made alternative arrangements with the Administrator as specified in \$63.10(d)(5)(ii). The letter must contain the information specified in \$63.10(d)(5)(ii). ### §63.3130 What records must I keep? You must collect and keep records of the data and information specified in this section. Failure to collect and keep these records is a deviation from the applicable standard. (a) A copy of each notification and report that you submitted to comply with this subpart, and the documentation supporting each notification and report. - (b) A current copy of information provided by materials suppliers or manufacturers, such as manufacturer's formulation data, or test data used to determine the mass fraction of organic HAP, the density and the volume fraction of coating solids for each coating. the mass fraction of organic HAP and the density for each thinner, and the mass fraction of organic HAP for each cleaning material. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of the complete test report. If you use information provided to you by the manufacturer or supplier of the material that was based on testing, you must keep the summary sheet of results provided to you by the manufacturer or supplier. If you use the results of an analysis conducted by an outside testing lab, you must keep a copy of the test report. You are not required to obtain the test report or other supporting documentation from the manufacturer or supplier. - (c) For each month, the records specified in paragraphs (c)(1) through (6) of this section. - (1) For each coating used for electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations and for each coating, except for deadener and for adhesive and sealer that are not components of glass bonding systems, used in coating operations added to the affected source pur- suant to §63.3082(c), a record of the volume used in each month, the mass fraction organic HAP content, the density, and the volume fraction of solids. - (2) For each thinner used for electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations and for each thinner, except for thinner used for deadener and for adhesive and sealer that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c), a record of the volume used in each month, the mass fraction organic HAP content, and the density. - (3) For each deadener material and for each adhesive and sealer material, a record of the mass used in each month and the mass
organic HAP content. - (4) A record of the calculation of the organic HAP emission rate for electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) for each month if subject to the emission limit of §63.3090(a) or §63.3091(a). This record must include all raw data, algorithms, and intermediate calculations. If the guidelines presented in the "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22), are used, you must keep records of all data input to this protocol. If these data are maintained as electronic files, the electronic files, as well as any paper copies must be maintained. These data must be provided to the permitting authority on request on paper, and in (if calculations are done electronically) electronic form. - (5) A record of the calculation of the organic HAP emission rate for primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) for each month if subject to the emission limit of §63.3090(b) or §63.3091(b), and a record of the weight fraction of each organic HAP in each material added to the electrodeposition primer system if subject to the limitations of §63.3092(a). This record must include all raw data, algorithms, and intermediate calculations. If the guidelines presented in the "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Oper-EPA-450/3-88-018 (Docket ID ations," No. OAR-2002-0093 and Docket ID No. A-2001-22), are used, you must keep records of all data input to this protocol. If these data are maintained as electronic files, the electronic files, as well as any paper copies must be maintained. These data must be provided to the permitting authority on request on paper, and in (if calculations are done electronically) electronic form. - (6) A record, for each month, of the calculation of the average monthly mass organic HAP content of: - (i) Sealers and adhesives; and - (ii) Deadeners. - (d) A record of the name and volume of each cleaning material used during each month. - (e) A record of the mass fraction of organic HAP for each cleaning material used during each month. - (f) A record of the density for each cleaning material used during each month. - (g) A record of the date, time, and duration of each deviation, and for each deviation, a record of whether the deviation occurred during a period of startup, shutdown, or malfunction. - (h) The records required by §63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction. - (i) For each capture system that is a PTE, the data and documentation you used to support a determination that the capture system meets the criteria in Method 204 of appendix M to 40 CFR part 51 for a PTE and has a capture efficiency of 100 percent, as specified in §63.3165(a). - (j) For each capture system that is not a PTE, the data and documentation you used to determine capture efficiency according to the requirements specified in §§63.3164 and 63.3165(b) through (g), including the records specified in paragraphs (j)(1) through (4) of this section that apply to you. - (1) Records for a liquid-to-uncapturedgas protocol using a temporary total enclosure or building enclosure. Records of the mass of total volatile hydrocarbon (TVH), as measured by Method 204A or F of appendix M to 40 CFR part 51, for each material used in the coating operation, and the total TVH for all materials used during each capture efficiency test run, including a copy of the test report. Records of the mass of TVH emissions not captured by the capture system that exited the temporary total enclosure or building enclosure during each capture efficiency test run, as measured by Method 204D or E of appendix M to 40 CFR part 51. including a copy of the test report. Records documenting that the enclosure used for the capture efficiency test met the criteria in Method 204 of appendix M to 40 CFR part 51 for either a temporary total enclosure or a building enclosure. - (2) Records for a gas-to-gas protocol using a temporary total enclosure or a building enclosure. Records of the mass of TVH emissions captured by the emission capture system, as measured by Method 204B or C of appendix M to 40 CFR part 51, at the inlet to the addon control device, including a copy of the test report. Records of the mass of TVH emissions not captured by the capture system that exited the temporary total enclosure or building enclosure during each capture efficiency test run, as measured by Method 204D or E of appendix M to 40 CFR part 51. including a copy of the test report. Records documenting that the enclosure used for the capture efficiency test met the criteria in Method 204 of appendix M to 40 CFR part 51 for either a temporary total enclosure or a building enclosure. - (3) Records for panel tests. Records needed to document a capture efficiency determination using a panel test as described in §63.3165(e) and (g), including a copy of the test report and calculations performed to convert the panel test results to percent capture efficiency values. (4) Records for an alternative protocol. Records needed to document a capture efficiency determination using an alternative method or protocol, as specified in §63.3165(f), if applicable. (k) The records specified in paragraphs (k)(1) and (2) of this section for each add-on control device organic HAP destruction or removal efficiency determination as specified in §63.3166. (1) Records of each add-on control device performance test conducted according to §§63.3164 and 63.3166. - (2) Records of the coating operation conditions during the add-on control device performance test showing that the performance test was conducted under representative operating conditions. - (1) Records of the data and calculations you used to establish the emission capture and add-on control device operating limits as specified in §63.3167 and to document compliance with the operating limits as specified in Table 1 to this subpart. - (m) Records of the data and calculations you used to determine the transfer efficiency for primer-surfacer and topcoat coatings and for all coatings, except for deadener and for adhesive and sealer that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c). (n) A record of the work practice plans required by \$63.3094(b) and (c) and documentation that you are implementing the plans on a continuous basis. Appropriate documentation may include operational and maintenance records, records of documented inspections, and records of internal audits. (0) For each add-on control device and for each continuous parameter monitoring system, a copy of the equipment operating instructions must be maintained on-site for the life of the equipment in a location readily available to plant operators and inspectors. You may prepare your own equipment operating instructions, or they may be provided to you by the equipment supplier or other third party. [69 FR 22623, Apr. 26, 2004, as amended at 72 FR 20233, Apr. 24, 2007] # §63.3131 In what form and for how long must I keep my records? - (a) Your records must be in a form suitable and readily available for expeditious review according to §63.10(b)(1). Where appropriate, the records may be maintained as electronic spreadsheets or as a database. - (b) Except as provided in §63.3130(o), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record, as specified in §63.10(b)(1). - (c) Except as provided in §63.3130(o), you must keep each record on site for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record according to §63.10(b)(1). You may keep the records off site for the remaining 3 years. COMPLIANCE REQUIREMENTS FOR ADHESIVE, SEALER, AND DEADENER # § 63.3150 By what date must I conduct the initial compliance demonstration? You must complete the initial compliance demonstration for the initial compliance period according to the requirements of §63.3151. The initial compliance period begins on the applicable compliance date specified in §63.3083 and ends on the last day of the month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next month. You must determine the mass average organic HAP content of the materials used each month for each group of materials for which an emission limitation is established in §63.3090(c) and (d) or §63.3091(c) and (d). The initial compliance demonstration includes the calculations according to §63.3151 and supporting documentation showing that during the initial compliance period, the mass average organic HAP content for each group of materials was equal to or less than the applicable emission limits in §63.3090(c) and (d) §63.3091(c) and (d). # § 63.3151 How do I demonstrate initial compliance with the emission limitations? You must separately calculate the mass average organic HAP content of the materials used during the initial compliance period for each group of materials for which an emission limit is established in §63.3090(c) and (d) or §63.3091(c) and (d). If every individual
material used within a group of materials meets the emission limit for that group of materials, you may demonstrate compliance with that emission limit by documenting the name and the organic HAP content of each material used during the initial compliance period. If any individual material used within a group of materials exceeds the emission limit for that group of materials, you must determine the mass average organic HAP content according to the procedures of paragraph (d) of this section. - (a) Determine the mass fraction of organic HAP for each material used. You must determine the mass fraction of organic HAP for each material used during the compliance period by using one of the options in paragraphs (a)(1) through (5) of this section. - (1) Method 311 (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures specified in paragraphs (a)(1)(i) and (ii) of this section when performing a Method 311 test. - (i) Count each organic HAP that is measured to be present at 0.1 percent by mass or more for OSHA-defined carcinogens, as specified in 29 CFR 1910.1200(d)(4), and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is measured to be 0.5 percent of the material by mass, you do not have to count it. Express the mass fraction of each organic HAP you count as a value truncated to four places after the decimal point (e.g., 0.3791). - (ii) Calculate the total mass fraction of organic HAP in the test material by adding up the individual organic HAP mass fractions and truncating the result to three places after the decimal point (e.g., 0.7638 truncates to 0.763). - (2) Method 24 (appendix A to 40 CFR part 60). For coatings, you may use Method 24 to determine the mass fraction of nonaqueous volatile matter and use that value as a substitute for mass fraction of organic HAP. - (3) Alternative method. You may use an alternative test method for determining the mass fraction of organic HAP once the Administrator has approved it. You must follow the procedure in §63.7(f) to submit an alternative test method for approval. - (4) Information from the supplier or manufacturer of the material. You may rely on information other than that generated by the test methods specified in paragraphs (a)(1) through (3) of this section, such as manufacturer's formulation data, if it represents each organic HAP that is present at 0.1 percent by mass or more for OSHA-defined carcinogens, as specified in 29 CFR 1910.1200(d)(4), and at 1.0 percent by mass or more for other compounds. For example, if toluene (not an OSHA carcinogen) is 0.5 percent of the material by mass, you do not have to count it. If there is a disagreement between such information and results of a test conducted according to paragraphs (a)(1) through (3) of this section, then the test method results will take precedence, unless after consultation, the facility demonstrates to the satisfaction of the enforcement authority that the facility's data are correct. - (5) Solvent blends. Solvent blends may be listed as single components for some materials in data provided by manufacturers or suppliers. Solvent blends may contain organic HAP which must be counted toward the total organic HAP mass fraction of the materials. When neither test data nor manufacturer's data for solvent blends are available. you may use the default values for the mass fraction of organic HAP in the solvent blends listed in Table 3 or 4 to this subpart. If you use the tables, you must use the values in Table 3 for all solvent blends that match Table 3 entries, and you may only use Table 4 if the solvent blends in the materials you use do not match any of the solvent blends in Table 3 and you only know whether the blend is aliphatic or aromatic. However, if the results of a Method 311 test indicate higher values than those listed on Table 3 or 4 to this subpart, the Method 311 results will take precedence, unless after consultation, the facility demonstrates to the satisfaction of the enforcement authority that the data from Table 3 or 4 are correct. (b) Determine the density of each material used. Determine the density of each material used during the compliance period from test results using ASTM Method D1475-98 (Reapproved 2003), "Standard Test Method for Density of Liquid Coatings. Inks, and Related Products" (incorporated by reference, see §63.14), or for powder coatings, test method A or test method B of ASTM Method D5965-02, "Standard Test Methods for Specific Gravity of Coating Powders," (incorporated by reference, see §63.14), or information from the supplier or manufacturer of the material. If there is disagreement between ASTM Method D1475-98 (Reapproved 2003) test results or ASTM Method D5965-02, test method A or test method B test results and the supplier's or manufacturer's information, the test results will take precedence unless after consultation, the facility demonstrates to the satisfaction of the enforcement authority that the facility's data are correct. - (c) Determine the volume of each material used. Determine the volume (liters) of each material used during each month by measurement or usage records. - (d) Determine the mass average organic HAP content for each group of materials. Determine the mass average organic HAP content of the materials used during the initial compliance period for each group of materials for which an emission limit is established in §63.3090(c) and (d) or §63.3091(c) and (d), using Equations 1 and 2 of this section. - (1) Calculate the mass average organic HAP content of adhesive and sealer materials other than components of the glass bonding system used in the initial compliance period using Equation 1 of this section: $$C_{avg, as} = \frac{\sum_{j=1}^{r} (Vol_{as, j})(D_{as, j})(W_{as, j})}{\sum_{j=1}^{r} (Vol_{as, j})(D_{as, j})}$$ (Eq. 1) Where: $C_{avg...m}$ = Mass average organic HAP content of adhesives and sealer materials used, kg/kg. Vol s., j = Volume of adhesive or sealer material, j. used, liters. D x, i = Density of adhesive or sealer material, j, used, kg per liter. W w., j = Mass fraction of organic HAP in adhesive or sealer material, j, kg/kg. r = Number of adhesive and sealer materials used. (2) Calculate the mass average organic HAP content of deadener materials used in the initial compliance period using Equation 2 of this section: $$C_{\text{avg, d}} = \frac{\sum_{m=1}^{s} (\text{Vol}_{d, m}) (D_{d, m}) (W_{d, m})}{\sum_{m=1}^{s} (\text{Vol}_{d, m}) (D_{d, m})}$$ (Eq. 2) Where: $C_{a_{k_E,d}}$ = Mass average organic HAP content of deadener material used, kg/kg. - Vol d. m = Volume of deadener material, m. used, liters. - D_{d.m} = Density of deadener material, m, used, kg per liter. - W d. in = Mass fraction of organic HAP in deadener material, m, kg/kg. - s = Number of deadener materials used. - (e) Compliance demonstration. The mass average organic HAP content for the compliance period must be less than or equal to the applicable emission limit in §63.3090(c) and (d) or §63.3091(c) and (d). You must keep all records as required by §§ 63.3130 and 63.3131. As part of the Notification of Compliance Status required by §63.3110, you must submit a statement that the coating operations were in compliance with the emission limitations during the initial compliance period because the mass average organic HAP content was less than or equal to the applicable emission limits in §63.3090(c) and (d) or §63.3091(c) and (d), determined according to this section. #### §63.3152 How do I demonstrate continuous compliance with the emission limitations? - (a) To demonstrate continuous compliance, the mass average organic HAP content for each compliance period, determined according to §63.3151(a) through (d), must be less than or equal to the applicable emission limit in §63.3090(c) and (d) or §63.3091(c) and (d). A compliance period consists of 1 month. Each month after the end of the initial compliance period described in §63.3150 is a compliance period consisting of that month. - (b) If the mass average organic HAP emission content for any compliance period exceeds the applicable emission limit in §63.3090(c) and (d) or §63.3091(c) and (d), this is a deviation from the emission limitations for that compliance period and must be reported as specified in §§63.3110(c)(6) and 63.3120(a)(5). - (c) You must maintain records as specified in §§63.3130 and 63.3131. COMPLIANCE REQUIREMENTS FOR THE COMBINED ELECTRODEPOSITION PRIMER, PRIMER-SURFACER, TOPCOAT, FINAL REPAIR, GLASS BONDING PRIMER, AND GLASS BONDING ADHESIVE EMISSION LIMITATIONS # § 63.3160 By what date must I conduct performance tests and other initial compliance demonstrations? - (a) New and reconstructed affected sources. For a new or reconstructed affected source, you must meet the requirements of paragraphs (a)(1) through (4) of this section. - (1) All emission capture systems, add-on control devices, and CPMS must be installed and operating no later than the applicable compliance date specified in §63.3083. You must conduct a performance test of each capture system and add-on control device according to §§63.3164 through 63.3166 and establish the operating limits required by §63.3093 no later than 180 days after the applicable compliance date specified in §63.3083. - (2) You must develop and begin implementing the work practice plans required by §63.3094(b) and (c) no later than the compliance date specified in §63.3083. - (3) You must complete the initial compliance demonstration for the initial compliance period according to the requirements of §63.3161. The initial compliance period begins on the applicable compliance date specified in §63.3083 and ends on the last day of the month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next
month. You must determine the mass of organic HAP emissions and volume of coating solids deposited in the initial compliance period. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to §§ 63.3164 through 63.3166; supporting documentation showing that during the initial compliance period the organic HAP emission rate was equal to or less than the emission limit in §63.3090(a); the operating limits established during the performance tests and the results of the continuous parameter monitoring required by §63.3168; and documentation of whether you developed and implemented the work practice plans required by §63.3094(b) and (c). (4) You do not need to comply with the operating limits for the emission capture system and add-on control device required by §63.3093 until after you have completed the performance tests specified in paragraph (a)(1) of this section. Instead, you must maintain a log detailing the operation and maintenance of the emission capture system, add-on control device, and CPMS during the period between the compliance date and the performance test. You must begin complying with the operating limits for your affected source on the date you complete the performance tests specified in paragraph (a)(1) of this section. (b) Existing affected sources. For an existing affected source, you must meet the requirements of paragraphs (b)(1) through (3) of this section. - (1) All emission capture systems, add-on control devices, and CPMS must be installed and operating no later than the applicable compliance date specified in §63.3083. You must conduct a performance test of each capture system and add-on control device according to the procedures in §§63.3164 through 63.3166 and establish the operating limits required by §63.3093 no later than the compliance date specified in §63.3083. - (2) You must develop and begin implementing the work practice plans required by §63.3094(b) and (c) no later than the compliance date specified in §63.3083. - (3) You must complete the initial compliance demonstration for the initial compliance period according to the requirements of §63.3161. The initial compliance period begins on the applicable compliance date specified in §63.3083 and ends on the last day of the month following the compliance date. If the compliance date occurs on any day other than the first day of a month, then the initial compliance period extends through the end of that month plus the next month. You must determine the mass of organic HAP emissions and volume of coating solids deposited during the initial compliance period. The initial compliance demonstration includes the results of emission capture system and add-on control device performance tests conducted according to §§63.3164 through 63.3166; supporting documentation showing that during the initial compliance period the organic HAP emission rate was equal to or less than the emission limits in §63.3091(a); the operating limits established during the performance tests and the results of the continuous parameter monitoring required by §63.3168; and documentation of whether you developed and implemented the work practice plans required by §63.3094(b) and (c). (c) You are not required to conduct an initial performance test to determine capture efficiency or destruction efficiency of a capture system or control device if you receive approval to use the results of a performance test that has been previously conducted on that capture system (either a previous stack test or a previous panel test) or control device. You are not required to conduct an initial test to determine transfer efficiency if you receive approval to use the results of a test that has been previously conducted. Any such previous tests must meet the conditions described in paragraphs (c)(1) through (3) of this section. (1) The previous test must have been conducted using the methods and conditions specified in this subpart. - (2) Either no process or equipment changes have been made since the previous test was performed or the owner or operator must be able to demonstrate that the results of the performance test reliably demonstrate compliance despite process or equipment changes. - (3) Either the required operating parameters were established in the previous test or sufficient data were collected in the previous test to establish the required operating parameters. ## \$63.3161 How do I demonstrate initial compliance? (a) You must meet all of the requirements of this section to demonstrate initial compliance. To demonstrate initial compliance, the organic HAP emissions from the combined electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to \$63.3082(c) must meet the applicable emission limitation in \$63.3090(a) or \$63.3091(a). (b) Compliance with operating limits. Except as provided in §63.3160(a)(4), you must establish and demonstrate continuous compliance during the initial compliance period with the operating limits required by §63.3093, using the procedures specified in §§63.3167 and 63.3168. (c) Compliance with work practice requirements. You must develop, implement, and document your implementation of the work practice plans required by §63.3094(b) and (c) during the initial compliance period, as specified in §63.3130. (d) Compliance with emission limits. You must follow the procedures in paragraphs (e) through (o) of this section to demonstrate compliance with the applicable emission limit in §63.3090(a) or §63.3091(a). You may also use the guidelines presented in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22) in making this demonstration. (e) Determine the mass fraction of organic HAP, density, and volume used. Follow the procedures specified in §63.3151(a) through (c) to determine the mass fraction of organic HAP and the density and volume of each coating and thinner used during each month. For electrodeposition primer operations, the mass fraction of organic HAP, density, and volume used must be determined for each material added to the tank or system during each month. (f) Determine the volume fraction of coating solids for each coating. You must determine the volume fraction of coating solids (liter of coating solids per liter of coating) for each coating used during the compliance period by a test or by information provided by the supplier or the manufacturer of the material, as specified in paragraphs (f)(1) of this section. (2) and electrodeposition primer operations, the volume fraction of solids must be determined for each material added to the tank or system during each month. If test results obtained according to paragraph (f)(1) of this section do not agree with the information obtained under paragraph (f)(2) of this section, the test results will take precedence unless, after consultation, the facility demonstrates to the satisfaction of the enforcement authority that the facility's data are correct. (1) ASTM Method D2697-86 approved 1998) or ASTM Method D6093-97 (Reapproved 2003). You may use ASTM Method D2697-86 (Reapproved 1998), "Standard Test Method for Volume Nonvolatile Matter in Clear or Pigmented Coatings" (incorporated by reference, see §63.14). or ASTM Method D6093-97 (Reapproved 2003), "Standard Test Method for Percent Volume Nonvolatile Matter in Clear or Pigmented Coatings Using a Helium Gas Pycnometer" (incorporated by reference, see §63.14), to determine the volume fraction of coating solids for each coating. Divide the nonvolatile volume percent obtained with the methods by 100 to calculate volume fraction of coating solids. (2) Information from the supplier or manufacturer of the material. You may obtain the volume fraction of coating solids for each coating from the supplier or manufacturer. (g) Determine the transfer efficiency for each coating. You must determine the transfer efficiency for each primer-surfacer and topcoat coating, and for all coatings, except for deadener and for adhesive and sealer that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) using ASTM Method D5066-91 (Reapproved 2001), "Standard Test Method for Determination of the Transfer Efficiency Under Production Conditions for Spray Application of Automotive Paints-Weight Basis" (incorporated by reference, see §63.14), or the guidelines presented in "Protocol for Determining Volatile Organic Compound Daily Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). You may conduct transfer efficiency testing on representative coatings and for representative spray booths as described in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). You may assume 100 transfer efficiency electrodeposition primer coatings. glass bonding primers, and glass bonding adhesives. For final repair coatings, you may assume 40 percent transfer efficiency for air atomized spray and 55 percent transfer efficiency for electrostatic spray and high volume, low pressure spray. For blackout, chip resistant edge primer, interior color, in-line repair, lower body anti-chip coatings, or underbody anti-chip coatings, you may assume 40 percent transfer efficiency for air atomized spray, 55 percent transfer efficiency for electrostatic spray and high volume-low
pressure spray, and 80 percent transfer efficiency for airless spray. (h) Calculate the total mass of organic HAP emissions before add-on controls. Calculate the total mass of organic HAP emissions before consideration of add-on controls from all coatings and thinners used during each month in the combined electrodeposition primer. primer-surfacer, topcoat, final repair. glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) using Equation 1 of this section: $$H_{BC} = A + B \qquad (Eq. 1)$$ Where: H_{BC} = Total mass of organic HAP emissions before consideration of add-on controls during the month, kg. A = Total mass of organic HAP in the coatings used during the month, kg. as calculated in Equation 1A of this section. B = Total mass of organic HAP in the thinners used during the month, kg, as calculated in Equation 1B of this section. (1) Calculate the kg organic HAP in the coatings used during the month using Equation 1A of this section: $$A = \sum_{i=1}^{m} (Vol_{c,i}) (D_{c,i}) (W_{c,i})$$ (Eq. 1A) Where A = Total mass of organic HAP in the coatings used during the month, kg. Vol., i = Total volume of coating, i, used during the month, liters. $D_{c,\ i} = Density$ of coating, i, kg coating per liter coating. W_{c, i} = Mass fraction of organic HAP in coating, i, kg organic HAP per kg coating. m = Number of different coatings used during the month. (2) Calculate the kg of organic HAP in the thinners used during the month using Equation 1B of this section: $$B = \sum_{j=1}^{n} (Vol_{t,j}) (D_{t,j}) (W_{t,j})$$ (Eq. 1B) Where B = Total mass of organic HAP in the thinners used during the month, kg. $Vol_{i,j} = Total$ volume of thinner, j. used during the month, liters. $D_{i,j} = Density of thinner, j, kg per liter.$ W. j = Mass fraction of organic HAP in thinner, j, kg organic HAP per kg thinner. n = Number of different thinners used during the month. (i) Calculate the organic HAP emission reduction for each controlled coating operation. Determine the mass of organic HAP emissions reduced for each controlled coating operation during each month. The emission reduction determination quantifies the total organic HAP emissions captured by the emission capture system and destroyed or removed by the add-on control device. Use the procedures in paragraph (j) of this section to calculate the mass of organic HAP emission reduction for each controlled coating operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances. For each controlled coating operation using a solvent recovery system for which you conduct a liquid-liquid material balance, use the procedures in paragraph (k) of this section to calculate the organic HAP emission reduction. (j) Calculate the organic HAP emission reduction for each controlled coating operation not using liquid-liquid material balances. For each controlled coating operation using an emission capture system and add-on control device other than a solvent recovery system for which you conduct liquid-liquid material balances, calculate the mass of organic HAP emission reduction for the controlled coating operation, excluding all periods of time in which a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or control device serving the controlled coating operation occurred, during the month using Equation 2 of this section. The calculation of mass of organic HAP emission reduction for the controlled coating operation during the month applies the emission capture system efficiency and add-on control device efficiency to the mass of organic HAP contained in the coatings and thinners that are used in the coating operation served by the emission capture system and add-on control device during each month. Except as provided in paragraph (p) of this section, for any period of time in which a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement of the capture system or control device serving the controlled coating operation occurred, you must assume zero efficiency for the emission capture system and add-on control device. Equation 2 of this section treats the materials used during such a deviation as if they were used on an uncontrolled coating operation for the time period of the deviation. $$H_{Cn} = (A_C + B_C - A_{unc} - B_{unc}) \left(\frac{CE}{100} \times \frac{DRE}{100} \right)$$ (Eq. 2) Where: tion, excluding all periods of time in which a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or control device serving the controlled coating operation occurred, for the controlled coating operation during the month, kg. A_C = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, kg, as calculated in Equation 2A of this section. B_C = Total mass of organic HAP in the thinners used in the controlled coating operation during the month. kg, as calculated in Equation 2B of this section. A_{MK} = Total mass of organic HAP in the coatings used during all periods of time in which a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or control device serving the controlled coating operation occurred for the controlled coating operation during the month, kg, as calculated in Equation 2C of this section. B_{wec} = Total mass of organic HAP in the thinners used during all periods of time in which a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or control device serving the controlled coating operation occurred for the controlled coating operation during the month, kg, as calculated in Equation 2D of this section. CE = Capture efficiency of the emission capture system vented to the add-on control device, percent. Use the test methods and procedures specified in §\$63.3164 and 63.3165 to measure and record capture efficiency. DRE = Organic HAP destruction or removal efficiency of the add-on control device. percent. Use the test methods and procedures in §§63.3164 and 63.3166 to measure and record the organic HAP destruction or removal efficiency. (1) Calculate the mass of organic HAP in the coatings used in the con- trolled coating operation, kg, using Equation 2A of this section. $$A_c = \sum_{i=1}^{m} (Vol_{c,i})(D_{c,i})(W_{c,i})$$ (Eq. 2A) Where: Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, kg. Vol. i = Total volume of coating, i, used during the month, liters. D_{c. i} = Density of coating, i, kg per liter. We. i = Mass fraction of organic HAP in coating, i, kg per kg. m = Number of different coatings used. (2) Calculate the mass of organic HAP in the thinners used in the controlled coating operation, kg, using Equation 2B of this section. $$B_c = \sum_{j=1}^{n} (Vol_{t,j}) (D_{t,j}) (W_{t,j}) \qquad \text{(Eq. 2B)}$$ Where: B_C = Total mass of organic HAP in the thinners used in the controlled coating operation during the month, kg. Vol. j = Total volume of thinner, j, used during the month, liters. D_{i, j} = Density of thinner, j, kg per liter. W_{i, j} = Mass fraction of organic HAP in thin- ner, j, kg per kg. n = Number of different thinners used. (3) Calculate the mass of organic HAP in the coatings used in the controlled coating operation during deviations specified in §63.3163(c) and (d), using Equation 2C of this section: $$A_{unc} = \sum_{i=1}^{m} (VOLD_i)(D_i)(W_i) \qquad (Eq. 2C)$$ Where: Anne = Total mass of organic HAP in the coatings used during all periods of time in which a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or control device serving the controlled coating operation occurred for the controlled coating operation during the month, kg. VOLD, = Total volume of coating, i, used in the controlled coating operation during deviations, liters. Di = Density of coating, i. kg per liter. W_i = Mass fraction of organic HAP in coating, i. kg organic HAP per kg coating. m = Number of different coatings. (4) Calculate the mass of organic HAP in the thinners used in the controlled coating operation during deviations specified in §63.3163(c) and (d), using Equation 2D of this section: $$B_{unc} = \sum_{j=1}^{n} (VOLD_j)(D_j)(W_j) \qquad (Eq. 2D)$$ Where: Busc = Total mass of organic HAP in the thinners used during all periods of time in which a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or control device serving the controlled coating operation occurred for the controlled coating operation during the month, kg. VOLD, = Total volume of thinner, j. used in the controlled coating operation during deviations, liters. $D_j = Density$ of thinner, j, kg per liter. W_n = Mass fraction of organic HAP in thinner, j, kg organic HAP per kg coating. n = Number of different thinners. (k) Calculate the organic HAP emission reduction for each controlled coating operation using liquid-liquid material balances. For each controlled coating operation using a solvent recovery system for which you conduct liquid-liquid material balances, calculate the mass of organic HAP emission reduction for the coating
operation controlled by the solvent recovery system using a liquid-liquid material balance during the month by applying the volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the coatings and thinners used in the coating operation controlled by the solvent recovery system during each month. Perform a liquid-liquid material balance for each month as specified in paragraphs (k)(1) through (6) of this section. Calculate the mass of organic HAP emission reduction by the solvent recovery system as specified in paragraph (k)(7) of this section. (1) For each solvent recovery system, install, calibrate, maintain, and operate according to the manufacturer's specifications, a device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. The device must be initially certified by the manufacturer to be accurate to within ±2.0 percent of the mass of volatile organic matter recovered. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for the month, kg, based on measurement with the device required in paragraph (k)(1) of this section. (3) Determine the mass fraction of volatile organic matter for each coating and thinner used in the coating operation controlled by the solvent recovery system during the month, kg volatile organic matter per kg coating. You may determine the volatile organic matter mass fraction using Method 24 of 40 CFR part 60, appendix A, or an EPA approved alternative method, or you may use information provided by the manufacturer or supplier of the coating. In the event of any inconsistency between information provided by the manufacturer or supplier and the results of Method 24 of 40 CFR part 60, appendix A, or an approved alternative method, the test method results will govern unless after consultation, the facility demonstrates to the satisfaction of the enforcement authority that the facility's data are correct. (4) Determine the density of each coating and thinner used in the coating operation controlled by the solvent recovery system during the month, kg per liter, according to §63.3151(b). (5) Measure the volume of each coating and thinner used in the coating operation controlled by the solvent recovery system during the month, liters. (6) Each month, calculate the solvent recovery system's volatile organic matter collection and recovery efficiency, using Equation 3 of this section: $$R_{v} = 100 \frac{M_{VR}}{\sum_{i=1}^{m} Vol_{i}D_{i}WV_{c,i} + \sum_{i=1}^{n} Vol_{j}D_{j}WV_{t,j}}$$ (Eq. 3) Where: R_v = Volatile organic matter collection and recovery efficiency of the solvent recovery system during the month, percent. M_{VR} = Mass of volatile organic matter recovered by the solvent recovery system during the month, kg. Vol. = Volume of coating, i, used in the coating operation controlled by the solvent recovery system during the month, litters D, = Density of coating, i, kg per liter. WV_{c, i} = Mass fraction of volatile organic matter for coating, i, kg volatile organic matter per kg coating. Vol_j = Volume of thinner, j. used in the coating operation controlled by the solvent recovery system during the month, liters. $D_j = Density of thinner, j, kg per liter.$ WV_{l,j} = Mass fraction of volatile organic matter for thinner, j. kg volatile organic matter per kg thinner. m = Number of different coatings used in the coating operation controlled by the solvent recovery system during the month. n = Number of different thinners used in the coating operation controlled by the solvent recovery system during the month. (7) Calculate the mass of organic HAP emission reduction for the coating operation controlled by the solvent recovery system during the month, using Equation 4 of this section: $$H_{CSR} = (A_{CSR} + B_{CSR}) \left(\frac{R_V}{100}\right) \qquad (Eq. 4)$$ Where: #### §63.3161 this section. H_{CSR} = Mass of organic HAP emission reduction for the coating operation controlled by the solvent recovery system using a liquid-liquid material balance during the month, kg. ACSR = Total mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system, kg. calculated using Equation 4A of this section. B_{CSR} = Total mass of organic HAP in the thinners used in the coating operation controlled by the solvent recovery sys- 40 CFR Ch. I (7-1-17 Edition) tem, kg, calculated using Equation 4B of R_{ν} = Volatile organic matter collection and recovery efficiency of the solvent recovery system, percent, from Equation 3 of this section. (i) Calculate the mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system, kg, using Equation 4A of this section. $$A_{CSR} = \sum_{i=1}^{m} (Vol_{c,i})(D_{c,i})(W_{c,i})$$ (Eq. 4A) Where: A_{CSR} = Total mass of organic HAP in the coatings used in the coating operation controlled by the solvent recovery system during the month, kg. Vol., . = Total volume of coating, i. used during the month in the coating operation controlled by the solvent recovery system, liters. $D_{i, j} = Density of coating, i, kg per liter.$ Wc. i = Mass fraction of organic HAP in coating, i, kg per kg. m = Number of different coatings used. (ii) Calculate the mass of organic HAP in the thinners used in the coating operation controlled by the solvent recovery system, kg, using Equation 4B of this section. $$B_{CSR} = \sum_{j=1}^{n} (Vol_{t,j})(D_{t,j})(W_{t,j})$$ (Eq. 4B) B_{CSR} = Total mass of organic HAP in the thinners used in the coating operation controlled by the solvent recovery system during the month, kg. Vol., j = Total volume of thinner, j, used during the month in the coating operation controlled by the solvent recovery system, liters. $D_{i,j}$ = Density of thinner, j, kg per liter. $W_{i,j}$ = Mass fraction of organic HAP in thin- ner, j, kg per kg. n = Number of different thinners used. (1) Calculate the total volume of coating solids deposited. Determine the total volume of coating solids deposited, liters, in the combined electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems used in coating operations added to the affected source pursuant to §63.3082(c) using Equation 5 of this section: $$V_{\text{sdep}} = \sum_{i=1}^{m} (Vol_{e,\,i}) (V_{s,\,i}) (TE_{e,\,i}) \qquad \text{(Eq. 5)}$$ Where V_{sdep} = Total volume of coating solids deposited during the month, liters. Voled = Total volume of coating, i, used during the month, liters. V_{s,i} = Volume fraction of coating solids for coating, i, liter solids per liter coating, determined according to §63.3161(f). TE_{e,i} = Transfer efficiency of coating, i. determined according to §63.3161(g), ex- pressed as a decimal, for example 60 percent must be expressed as 0.60. M = Number of coatings used during the month. (m) Calculate the mass of organic HAP emissions for each month. Determine the mass of organic HAP emissions, kg, during each month, using Equation 6 of this section. $$H_{HAP} = H_{BC} - \sum_{i=1}^{q} (H_{Cn,i}) - \sum_{j=1}^{r} (H_{CSR,j}) - \sum_{k=1}^{q} \sum_{m=1}^{Sk} (H_{DEV,k,m})$$ (Eq. 6) Where: H_{HAP} = Total mass of organic HAP emissions for the month, kg. H_{RC} = Total mass of organic HAP emissions before add-on controls from all the coatings and thinners used during the month, kg, determined according to paragraph (h) of this section. H_{Cn. i} = Total mass of organic HAP emission reduction for controlled coating operation, i, not using a liquid-liquid material balance, excluding all periods of time in which a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or control device serving the controlled coating operation occurred, for the controlled coating operation during the month, from Equation 2 of this section. H_{CSR. i} = Total mass of organic HAP emission reduction for coating operation, j, controlled by a solvent recovery system using a liquid-liquid material balance, during the month, kg, from Equation 4 of this section. H_{DEV. L. mi} = Mass of organic HAP emission reduction, based on the capture system and control device efficiency approved under paragraph (p) of this section for period of deviation, m, for controlled coating operation, k, kg, as determined using Equation 8 of this section. q = Number of controlled coating operations not using a liquid-liquid material balance. r = Number of coating operations controlled by a solvent recovery system using a liquid-liquid material balance. S_k = Number of periods of deviation in the month for which non-zero capture and control device efficiencies have been approved for controlled coating operation, k. (n) Calculate the organic HAP emission rate for the month. Determine the organic HAP emission rate for the month, kg organic HAP per liter coating solids deposited, using Equation 7 of this section: $$H_{rate} = (H_{HAP})/(V_{sdep})$$ (Eq. 7) Where H_{tate} = Organic HAP emission rate for the month compliance period, kg organic HAP per liter coating solids deposited. H_{HAP} = Mass of organic HAP emissions for the month, kg, determined according to Equation 6 of this section. V_{dep} = Total volume of coating solids deposited during the month, liters, from Equation 5 of this section. (o) Compliance demonstration. To demonstrate initial compliance, the organic HAP emissions from the combined electrodeposition primer, primersurfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used
in coating operations added to the affected source pursuant to §63.3082(c) must be less than or equal to the applicable emission limitation in §63.3090(a) or §63.3091(a). You must keep all records as required by §§ 63.3130 and 63.3131. As part of the Notification of Compliance Status required by §63.3110, you must submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because the organic HAP emission rate was less than or equal to the applicable emission limit in §63.3090(a) or §63.3091(a) and you achieved the operating limits required by §63.3093 and the work practice standards required by §63.3094. (p) You may request approval from the Administrator to use non-zero capture efficiencies and add-on control device efficiencies for any period of time in which a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or add-on control device serving a controlled coating operation occurred. (1) If you have manually collected parameter data indicating that a capture system or add-on control device was operating normally during a CPMS malfunction, a CPMS out-of-control period, or associated repair, then these data may be used to support and document your request to use the normal capture efficiency or add-on control device efficiency for that period of deviation. (2) If you have data indicating the actual performance of a capture system or add-on control device (e.g., capture efficiency measured at a reduced flow rate or add-on control device efficiency measured at a reduced thermal oxidizer temperature) during a deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or add-on control device serving a controlled coating operation, then these data may be used to support and document your request to use these values for that period of deviation. (3) The organic HAP emission reduction achieved during each period of deviation, including a deviation during a period of startup, shutdown, or malfunction, from an operating limit or from any CPMS requirement for the capture system or add-on control device serving a controlled coating operation for which the Administrator has approved the use of non-zero capture efficiency and add-on control device efficiency values is calculated using Equation 8 of this section. $$H_{DEV} = (A_{DEV} + B_{DEV}) \left(\frac{CE_{DEV}}{100}\right) \left(\frac{DRE_{DEV}}{100}\right)$$ (Eq. 8) Where: H_{DEV} = Mass of organic HAP emission reduction achieved during a period of deviation for the controlled coating operation, kg. Ann = Total mass of organic HAP in the coatings used in the controlled coating operation during the period of deviation, kg. as calculated in Equation 8A of this section. $B_{\rm DEV}$ = Total mass of organic HAP in the thinners used in the controlled coating operation during the period of deviation, kg, as calculated in Equation 8B of this section. CEDEV = Capture efficiency of the emission capture system vented to the add-on control device, approved for the period of deviation, percent. DREDEV = Organic HAP destruction or removal efficiency of the add-on control device approved for the period of deviation, percent. (4) Calculate the total mass of organic HAP in the coatings used in the controlled coating operation during the period of deviation using equation 8A of this section: $$A_{DEV} = \sum_{i=i}^{m} (VOL_{CDEV,i}) (D_{c,i}) (W_{c,i}) \qquad (Eq. 8A)$$ Where: ADEV = Total mass of organic HAP in the coatings used in the controlled coating operation during the period of deviation, kg. VOLCDEV. : = total volume of coating, i, used in the controlled coating operation during the period of deviation, liters. $D_{c,i}$ = Density of coating, i, kg per liter. $W_{c,i}$ = Mass fraction of organic HAP in coating, i, kg per kg. m = Number of different coatings used. (5) Calculate the total mass of organic HAP in the thinners used in the controlled coating operation during the period of deviation using equation 8B of this section: BDEV = $$\sum_{j=i}^{n} (VOL_{TDEV,j})(D_{t,j})(W_{t,j})$$ (Eq. 8B) Where: B_{DEV} = Total mass of organic HAP in the thinners used in the controlled coating operation during the period of deviation, kg VOLIDEV. j = Total volume of thinner, j, used in the controlled coating operation during the period of deviation, liters. D_{i. i} = Density of thinner, j, kg per liter. W. j = Mass fraction of organic HAP in thinner, j, kg per kg. n = Number of different thinners used. [69 FR 22623, Apr. 26, 2004, as amended at 72 FR 20233, Apr. 24, 2007] ### § 63.3162 [Reserved] # § 63.3163 How do I demonstrate continuous compliance with the emission limitations? (a) To demonstrate continuous compliance with the applicable emission limit in §63.3090(a) or §63.3091(a), the organic HAP emission rate for each compliance period, determined according to the procedures in §63.3161, must be equal to or less than the applicable emission limit in §63.3090(a) or §63.3091(a). A compliance period consists of 1 month. Each month after the end of the initial compliance period described in §63.3160 is a compliance period consisting of that month. You must perform the calculations in §63.3161 on a monthly basis. (b) If the organic HAP emission rate for any 1 month compliance period exceeded the applicable emission limit in §63.3090(a) or §63.3091(a), this is a deviation from the emission limitation for that compliance period and must be reported as specified in §63.3110(c)(6) and 63.3120(a)(6). (c) You must demonstrate continuous compliance with each operating limit required by §63.3093 that applies to you, as specified in Table 1 to this subpart. (1) If an operating parameter is out of the allowed range specified in Table 1 to this subpart, this is a deviation from the operating limit that must be reported as specified in §§63.3110(c)(6) and 63.3120(a)(6). (2) If an operating parameter deviates from the operating limit specified in Table 1 to this subpart, then you must assume that the emission capture system and add-on control device were achieving zero efficiency during the time period of the deviation except as provided in §63.3161(p). (d) You must meet the requirements for bypass lines in §63.3168(b) for control devices other than solvent recovery systems for which you conduct liquid-liquid material balances. If any bypass line is opened and emissions are diverted to the atmosphere when the coating operation is running, this is a deviation that must be reported as §§ 63.3110(c)(6) specified in 63.3120(a)(6). For the purposes of completing the compliance calculations specified in §63.3161(k), you must assume that the emission capture system and add-on control device were achieving zero efficiency during the time period of the deviation. (e) You must demonstrate continuous compliance with the work practice standards in §63.3094. If you did not develop a work practice plan, if you did not implement the plan, or if you did not keep the records required by §63.3130(n). this is a deviation from the work practice standards that must be reported as specified in §§63.3110(c)(6) and 63.3120(a)(6). - (f) If there were no deviations from the emission limitations, submit a statement as part of the semiannual compliance report that you were in compliance with the emission limitations during the reporting period because the organic HAP emission rate for each compliance period was less than or equal to the applicable emission limit in \$63.3090(a) or \$63.3091(a), and you achieved the operating limits required by \$63.3093 and the work practice standards required by \$63.3094 during each compliance period. - (g) [Reserved] - (h) Consistent with §§63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction of the emission capture system, add-on control device, or coating operation that may affect emission capture or control device efficiency are not violations if you demonstrate to the Administrator's satisfaction that you were operating in accordance with §63.6(e)(1). The Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown, or malfunction are violations according to the provisions in §63.6(e). - (i) [Reserved] - (j) You must maintain records as specified in §§ 63.3130 and 63.3131. [69 FR 22623, Apr. 26, 2004, as amended at 71 FR 20464, Apr. 20, 2006] ## § 63.3164 What are the general requirements for performance tests? - (a) You must conduct each performance test required by §63.3160 according to the requirements in §63.7(e)(1) and under the conditions in this section unless you obtain a waiver of the performance test according to the provisions in §63.7(h). - (1) Representative coating operation operating conditions. You must conduct the performance test under representative operating conditions for the coating operation. Operations during periods of startup, shutdown, or malfunction, and during periods of nonoperation do not constitute representative conditions. You must record the process information that is necessary to document operating conditions during the test and explain why the conditions represent normal operation. - (2) Representative emission capture system and add-on control device operating conditions. You must conduct the performance test when the emission capture system and add-on control device are operating at a representative flow rate, and the add-on control device is operating at a representative inlet concentration. You must record information that is necessary to document emission capture system and add-on control device operating conditions during the test and explain why the conditions represent normal operation. - (b) You must conduct each performance test of an emission
capture system according to the requirements in §63.3165. You must conduct each performance test of an add-on control device according to the requirements in §63.3166. ## § 63.3165 How do I determine the emission capture system efficiency? You must use the procedures and test methods in this section to determine capture efficiency as part of the performance test required by §63.3160. For purposes of this subpart, a spray booth air seal is not considered a natural draft opening in a PTE or a temporary total enclosure provided you demonstrate that the direction of air movement across the interface between the spray booth air seal and the spray booth is into the spray booth. For purposes of this subpart, a bake oven air seal is not considered a natural draft opening in a PTE or a temporary total enclosure provided you demonstrate that the direction of air movement across the interface between the bake oven air seal and the bake oven is into the bake oven. You may use lightweight strips of fabric or paper, or smoke tubes to make such demonstrations as part of showing that your capture system is a PTE or conducting a capture efficiency test using a temporary total enclosure. You cannot count air flowing from a spray booth air seal into a spray booth as air flowing through a natural draft opening into a PTE or into a temporary total enclosure unless you elect to treat that spray booth air seal as a natural draft opening. You cannot count air flowing from a bake oven air seal into a bake oven as air flowing through a natural draft opening into a PTE or into a temporary total enclosure unless you elect to treat that bake oven air seal as a natural draft opening. (a) Assuming 100 percent capture efficiency. You may assume the capture system efficiency is 100 percent if both of the conditions in paragraphs (a)(1) and (2) of this section are met: (1) The capture system meets the criteria in Method 204 of appendix M to 40 CFR part 51 for a PTE and directs all the exhaust gases from the enclosure to an add-on control device. (2) All coatings and thinners used in the coating operation are applied within the capture system, and coating solvent flash-off and coating curing and drying occurs within the capture system. For example, this criterion is not met if parts enter the open shop environment when being moved between a spray booth and a curing oven. (b) Measuring capture efficiency. If the capture system does not meet both of the criteria in paragraphs (a)(1) and (2) of this section, then you must use one of the five procedures described in paragraphs (c) through (g) of this section to measure capture efficiency. The capture efficiency measurements use TVH capture efficiency as a surrogate for organic HAP capture efficiency. For the protocols in paragraphs (c) and (d) of this section, the capture efficiency measurement must consist of three test runs. Each test run must be at least 3 hours duration or the length of a production run, whichever is longer, up to 8 hours. For the purposes of this test, a production run means the time required for a single part to go from the beginning to the end of production. which includes surface preparation activities and drying or curing time. (c) Liquid-to-uncaptured-gas protocol using a temporary total enclosure or The liquid-tobuilding enclosure. uncaptured-gas protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH emissions not captured by the emission capture system. Use a temporary total enclosure or a building enclosure and the procedures in paragraphs (c)(1) through (6) of this section to measure emission capture system efliquid-tousing the uncaptured-gas protocol. (1) Either use a building enclosure or construct an enclosure around the coating operation where coatings and thinners are applied, and all areas where emissions from these applied coatings and thinners subsequently occur, such as flash-off, curing, and drying areas. The areas of the coating operation where capture devices collect emissions for routing to an add-on control device, such as the entrance and exit areas of an oven or spray booth, must also be inside the enclosure. The enclosure must meet the applicable definition of a temporary total enclosure or building enclosure in Method 204 of appendix M to 40 CFR part 51. (2) Use Method 204A or F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating and thinner used in the coating operation during each capture efficiency test run. To make the determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to calculate the total mass of TVH liquid input from all the coatings and thinners used in the coating operation during each capture efficiency test run. $$TVH_{used} = \sum_{i=1}^{n} (TVH_i)(Vol_i)(D_i) \qquad (Eq. 1)$$ Where: TVH; = Mass fraction of TVH in coating or thinner, i. used in the coating operation during the capture efficiency test run, kg TVH per kg material. Vol; = Total volume of coating or thinner, i. used in the coating operation during the capture efficiency test run, liters. D, = Density of coating or thinner, i, kg material per liter material. n = Number of different coatings and thinners used in the coating operation during the capture efficiency test run. (4) Use Method 204D or E of appendix M to 40 CFR part 51 to measure the total mass, kg, of TVH emissions that are not captured by the emission capture system; they are measured as they exit the temporary total enclosure or building enclosure during each capture efficiency test run. To make the measurement, substitute TVH for each occurrence of the term VOC in the methods. (i) Use Method 204D if the enclosure is a temporary total enclosure. (ii) Use Method 204E if the enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting operations inside the building enclosure, other than the coating operation for which capture efficiency is being determined, must be shut down, but all fans and blowers must be operating normally. (5) For each capture efficiency test run, determine the percent capture efficiency of the emission capture system using Equation 2 of this section: $$CE = \frac{\left(TVH_{used} - TVH_{uncaptured}\right)}{TVH_{used}} \times 100 \quad (Eq. 2)$$ Where: CE = Capture efficiency of the emission capture system vented to the add-on control device, percent. TVH peol = Total mass of TVH liquid input used in the coating operation during the capture efficiency test run, kg. TVH was pured = Total mass of TVH that is not captured by the emission capture system and that exits from the temporary total enclosure or building enclosure during the capture efficiency test run, kg. (6) Determine the capture efficiency of the emission capture system as the average of the capture efficiencies measured in the three test runs. (d) Gas-to-gas protocol using a temporary total enclosure or a building enclosure. The gas-to-gas protocol compares the mass of TVH emissions captured by the emission capture system to the mass of TVH emissions not captured. Use a temporary total enclosure or a building enclosure and the procedures in paragraphs (d)(1) through (5) of this section to measure emission capture system efficiency using the gas-to-gas protocol. (1) Either use a building enclosure or construct an enclosure around the coating operation where coatings and thinners are applied, and all areas where emissions from these applied coatings and thinners subsequently occur. such as flash-off, curing, and drying areas. The areas of the coating operation where capture devices collect emissions generated by the coating operation for routing to an add-on control device, such as the entrance and exit areas of an oven or a spray booth, must also be inside the enclosure. The enclosure must meet the applicable definition of a temporary total enclosure or building enclosure in Method 204 of appendix M to 40 CFR part 51. (2) Use Method 204B or C of appendix M to 40 CFR part 51 to measure the total mass, kg, of TVH emissions captured by the emission capture system during each capture efficiency test run as measured at the inlet to the add-on control device. To make the measurement, substitute TVH for each occurrence of the term VOC in the methods. (i) The sampling points for the Method 204B or C measurement must be upstream from the add-on control device and must represent total emissions routed from the capture system and entering the add-on control device. (ii) If multiple emission streams from the capture system enter the add-on control device without a single common duct, then the emissions entering the add-on control device must be simultaneously or sequentially measured in each duct, and the total emissions entering the add-on control device must be determined. (3) Use Method 204D or E of appendix M to 40 CFR part 51 to measure the total mass, kg, of TVH emissions that are not captured by the emission capture system; they are measured as they exit the temporary total enclosure or building enclosure during each capture efficiency test run. To make the measurement, substitute TVH for each occurrence of the term VOC in the methods. (i) Use Method 204D if the enclosure is a temporary total enclosure. (ii) Use Method 204E if the enclosure is a building enclosure. During the cap- ture efficiency measurement, all organic compound emitting operations inside the building enclosure, other than the coating operation for which capture efficiency is being determined, must be shut down, but all fans and blowers must be operating normally. (4) For each capture efficiency test run, determine the percent capture efficiency of the emission capture system using Equation 3 of this section: $$CE = \frac{TVH_{captured}}{\left(TVH_{captured} + TVH_{uncaptured}\right)} \times 100$$ (Eq. 3) Where CE = Capture efficiency
of the emission capture system vented to the add-on control device, percent. TVH_{captured} = Total mass of TVH captured by the emission capture system as measured at the inlet to the add on control device during the emission capture efficiency test run. kg. test run, kg. TVH_{unceptured} = Total mass of TVH that is not captured by the emission capture system and that exits from the temporary total enclosure or building enclosure during the capture efficiency test run, kg. (5) Determine the capture efficiency of the emission capture system as the average of the capture efficiencies measured in the three test runs. (e) Panel testing to determine the capture efficiency of flash-off or bake oven emissions. You may conduct panel testing to determine the capture efficiency of flash-off or bake oven emissions using ASTM Method D5087-02, "Standard Test Method for Determining Amount of Volatile Organic Compound (VOC) Released from Solventborne Automotive Coatings and Available for Removal in a VOC Control Device (Abatement) (incorporated by reference, see §63.14). ASTM Method D6266-00a, "Test Method for Determining the Amount of Volatile Organic Compound (VOC) Released from Waterborne Automotive Coatings and Available for Removal in a VOC Control Device (Abatement)" (incorporated by reference, see §63.14), or the guidelines presented in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). You may conduct panel testing on representative coatings as described in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations." EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). The results of these panel testing procedures are in units of mass of VOC per volume of coating solids deposited and must be converted to a percent value for use in this subpart. If you panel test representative coatings. then you may convert the panel test result for each representative coating either to a unique percent capture efficiency for each coating grouped with that representative coating by using coating specific values for the volume of coating solids deposited per volume of coating used, mass of VOC per volume of coating, volume fraction solids. transfer efficiency, density and mass fraction VOC in Equations 4 through 6 of this section: or to a composite percent capture efficiency for the group of coatings by using composite values for the group of coatings for the volume of coating solids deposited per volume of coating used and for the mass of VOC per volume of coating, and average values for the group of coatings for volume fraction solids, transfer efficiency. density and mass fraction VOC in Equations 4 through 6 of this section. If you panel test each coating, then you must convert the panel test result for each coating to a unique percent capture efficiency for that coating by using coating specific values for the volume of coating solids deposited per volume of coating used. mass of VOC per volume of coating, volume fraction solids, transfer efficiency, density, and mass fraction VOC in Equations 4 through 6 of this section. Panel test results expressed in units of mass of VOC per volume of coating solids deposited must be converted to percent capture efficiency using Equation 4 of this section. (An alternative for using panel test results expressed in units of mass of VOC per mass of coating solids deposited is presented in paragraph (e)(3) of this section.) $$CE_i = (P_{v,i})(V_{sdep,i})(100)/(VOC_i)$$ (Eq. 4) Where: CE, = Capture efficiency for coating, i, or for the group of coatings, including coating, i, for the flash-off area or bake oven for which the panel test is conducted, percent. P_{v,i} = Panel test result for coating, i, or for the coating representing coating, i, in the panel test, kg of VOC per liter of coating solids deposited. Valen. = Volume of coating solids deposited per volume of coating used for coating, i, or composite volume of coating solids deposited per volume of coating used for the group of coatings including coating. i, in the spray booth(s) preceding the flash-off area or bake oven for which the panel test is conducted, liter of coating solids deposited per liter of coating used. from Equation 5 of this section. VOC, = Mass of VOC per volume of coating for coating, i, or composite mass of VOC per volume of coating for the group of coatings including coating, i, kg per liter, from Equation 6 of this section. (1) Calculate the volume of coating solids deposited per volume of coating used for coating, i, or the composite volume of coating solids deposited per volume of coating used for the group of coatings including coating, i, used during the month in the spray booth(s) preceding the flash-off area or bake oven for which the panel test is conducted using Equation 5 of this section; $$V_{\text{sdep},i} = (V_{s,i})(TE_{c,i}) \qquad (Eq. 5)$$ Where: V.dep. i = Volume of coating solids deposited per volume of coating used for coating, i, or composite volume of coating solids deposited per volume of coating used for the group of coatings including coating. i, in the spray booth(s) preceding the flash-off area or bake oven for which the panel test is conducted, liter of coating solids deposited per liter of coating used. V. . = Volume fraction of coating solids for coating, i. or average volume fraction of coating solids for the group of coatings including coating, i. liter coating solids per liter coating, determined according to §63.3161(f). TEc. i = Transfer efficiency of coating, i, or average transfer efficiency for the group of coatings including coating, i, in the spray booth(s) for the flash-off area or bake oven for which the panel test is conducted determined according §63.3161(g), expressed as a decimal, for example 60 percent must be expressed as 0.60. (Transfer efficiency also may be determined by testing representative coatings. The same coating groupings may be appropriate for both transfer efficiency testing and panel testing. In this case, all of the coatings in a panel test grouping would have the same transfer efficiency.) (2) Calculate the mass of VOC per volume of coating for coating, i, or the composite mass of VOC per volume of coating for the group of coatings including coating, i, used during the month in the spray booth(s) preceding the flash-off area or bake oven for which the panel test is conducted, kg. using Equation 6 of this section: $$VOC_i = (D_{c,i})(Wvoc_{c,i})$$ (Eq. 6) Where VOC, = Mass of VOC per volume of coating for coating, i, or composite mass of VOC per volume of coating for the group of coatings including coating, i, used during the month in the spray booth(s) preceding the flash-off area or bake oven for which the panel test is conducted, kg VOC per liter coating. D_{c,i} = Density of coating, i, or average density of the group of coatings, including coating, i, kg coating per liter coating, density determined according to §63,3151(b). Wvoc_{ci} = Mass fraction of VOC in coating, i, or average mass fraction of VOC for the group of coatings, including coating, i, kg VOC per kg coating, determined by Method 24 (appendix A to 40 CFR part 60) or the guidelines for combining analytical VOC content and formulation solvent content presented in Section 9 of "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). (3) As an alternative, you may choose to express the results of your panel tests in units of mass of VOC per mass of coating solids deposited and convert such results to a percent using Equation 7 of this section. If you panel test representative coatings, then you may convert the panel test result for each representative coating either to a unique percent capture efficiency for each coating grouped with that representative coating by using coating specific values for the mass of coating solids deposited per mass of coating used, mass fraction VOC, transfer efficiency, and mass fraction solids in Equations 7 and 8 of this section; or to a composite percent capture efficiency for the group of coatings by using composite values for the group of coatings for the mass of coating solids deposited per mass of coating used and average values for the mass of VOC per volume of coating, average values for the group of coatings for mass fraction VOC, transfer efficiency, and mass fraction solids in Equations 7 and 8 of this section. If you panel test each coating, then you must convert the panel test result for each coating to a unique percent capture efficiency for that coating by using coating specific values for the mass of coating solids deposited per mass of coating used, mass fraction VOC, transfer efficiency, and mass fraction solids in Equations 7 and 8 of this section. Panel test results expressed in units of mass of VOC per mass of coating solids deposited must be converted to percent capture efficiency using Equation 7 of this section: $$CE_i = (P_{m,i})(W_{adop,i})(100)/(Wvoc_{c,i})$$ (Eq. 7) Where CE_i = Capture efficiency for coating. i, or for the group of coatings including coating, i, for the flash-off area or bake oven for which the panel test is conducted, percent. $P_{\rm m,i}$ = Panel test result for coating. i. or for the coating representing coating, i. in the panel test, kg of VOC per kg of coating solids deposited. W_{step,i} = Mass of coating solids deposited per mass of coating used for coating, i, or composite mass of coating solids deposited per mass of coating used for the group of coatings, including coating, i, in the spray booth(s) preceding the flash-off area or bake oven for which the panel test is conducted, kg of solids deposited per kg of coating
used, from Equation 8 of this section. Wvoc_{c,i} = Mass fraction of VOC in coating, i, or average mass fraction of VOC for the group of coatings, including coating, i, kg VOC per kg coating, determined by Method 24 (appendix A to 40 CFR part 60) or the guidelines for combining analytical VOC content and formulation solvent content presented in Section 9 of "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). (4) Calculate the mass of coating solids deposited per mass of coating used for each coating or the composite mass of coating solids deposited per mass of coating used for each group of coatings used during the month in the spray booth(s) preceding the flash-off area or bake oven for which the panel test is conducted using Equation 8 of this section: $$W_{\text{sdep,i}} = (W_{s,i})(TE_{c,i})$$ (Eq. 8) Where W.dep. := Mass of coating solids deposited per mass of coating used for coating. i. or composite mass of coating solids deposited per mass of coating used for the group of coatings including coating. i. in the spray booth(s) preceding the flash-off area or bake oven for which the panel test is conducted, kg coating solids deposited per kg coating used. - W. i = Mass fraction of coating solids for coating, i, or average mass fraction of coating solids for the group of coatings including coating, i, kg coating solids per kg coating, determined by Method 24 (appendix A to 40 CFR part 60) or the guidelines for combining analytical VOC content and formulation solvent content presented in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations." EPA-4503-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). - TEc., = Transfer efficiency of coating, i. or average transfer efficiency for the group of coatings including coating, i, in the spray booth(s) for the flash-off area or bake oven for which the panel test is conducted determined according to §63.3161(g), expressed as a decimal, for example 60 percent must be expressed as 0.60. (Transfer efficiency also may be determined by testing representative coatings. The same coating groupings may be appropriate used for both transfer efficiency testing and panel testing. In this case, all of the coatings in a panel test grouping would have the same transfer efficiency.) - (f) Alternative capture efficiency procedure. As an alternative to the procedures specified in paragraphs (c) through (e) and (g) of this section, you may determine capture efficiency using any other capture efficiency protocol and test methods that satisfy the criteria of either the DQO or LCL approach as described in appendix A to subpart KK of this part. - (g) Panel testing to determine the capture efficiency of spray booth emissions from solvent-borne coatings. You may conduct panel testing to determine the capture efficiency of spray booth emissions from solvent-borne coatings using the procedure in appendix A to this subpart. [69 FR 22623, Apr. 26, 2004, as amended at 72 FR 20234, Apr. 24, 2007] #### § 63.3166 How do I determine the addon control device emission destruction or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by §63.3160. You must conduct three test runs as specified in §63.7(e)(3), and each test run must last at least 1 hour. - (a) For all types of add-on control devices, use the test methods specified in paragraphs (a)(1) through (5) of this section. - (1) Use Method 1 or 1A of appendix A to 40 CFR part 60, as appropriate, to select sampling sites and velocity traverse points. - (2) Use Method 2, 2A, 2C, 2D, 2F, or 2G of appendix A to 40 CFR part 60, as appropriate, to measure gas volumetric flow rate. - (3) Use Method 3, 3A, or 3B of appendix A to 40 CFR part 60, as appropriate, for gas analysis to determine dry molecular weight. The ANSI/ASME PTC 19.10-1981, "Flue and Exhaust Gas Analyses [Part 10, Instruments and Apparatus]" (incorporated by reference, see §63.14), may be used as an alternative to Method 3B. - (4) Use Method 4 of appendix A to 40 CFR part 60 to determine stack gas moisture. - (5) Methods for determining gas volumetric flow rate, dry molecular weight, and stack gas moisture must be performed, as applicable, during each test run. - (b) Measure total gaseous organic mass emissions as carbon at the inlet and outlet of the add-on control device simultaneously, using either Method 25 or 25A of appendix A to 40 CFR part 60, as specified in paragraphs (b)(1) through (3) of this section. You must use the same method for both the inlet and outlet measurements. - (1) Use Method 25 if the add-on control device is an oxidizer and you expect the total gaseous organic concentration as carbon to be more than 50 parts per million by volume (ppmv) at the control device outlet. - (2) Use Method 25A if the add-on control device is an oxidizer and you expect the total gaseous organic concentration as earbon to be 50 ppmv or less at the control device outlet. - (3) Use Method 25A if the add-control device is not an oxidizer. - (c) If two or more add-on control devices are used for the same emission stream, then you must measure emissions at the outlet of each device. For example, if one add-on control device is a concentrator with an outlet for the high-volume, dilute stream that has been treated by the concentrator, and a second add-on control device is an oxidizer with an outlet for the low-volume, concentrated stream that is treated with the oxidizer, you must measure emissions at the outlet of the oxidizer and the high volume dilute stream outlet of the concentrator. (d) For each test run, determine the total gaseous organic emissions mass flow rates for the inlet and the outlet of the add-on control device, using Equation 1 of this section. If there is more than one inlet or outlet to the add-on control device, you must calculate the total gaseous organic mass flow rate using Equation 1 of this section for each inlet and each outlet and then total all of the inlet emissions and total all of the outlet emissions. $$M_{f=}Q_{sd}C_{c}(12)(0.0416)(10^{-6})$$ (Eq. 1) Where M_f = Total gaseous organic emissions mass flow rate, kg per hour (kg/h). C_c = Concentration of organic compounds as carbon in the vent gas, as determined by Method 25 or Method 25A. ppmv. dry basis. Q_{vd} = Volumetric flow rate of gases entering or exiting the add-on control device, as determined by Method 2, 2A, 2C, 2D, 2F, or 2G, dry standard cubic meters per hour (dscm/h). 0.0416 = Conversion factor for molar volume, kg-moles per cubic meter (mol/m³) (@ 293 Kelvin (K) and 760 millimeters of mercury (mmHg)). (e) For each test run, determine the add-on control device organic emissions destruction or removal efficiency using Equation 2 of this section: DRE = $$\frac{M_{fi} - M_{fo}}{M_{fi}}$$ (100) (Eq. 2) Where: DRE = Organic emissions destruction or removal efficiency of the add-on control device, percent. M_{fi} = Total gaseous organic emissions mass flow rate at the inlet(s) to the add-on control device, using Equation 1 of this section, kg/h. M_{fu} = Total gaseous organic emissions mass flow rate at the outlet(s) of the add-on control device, using Equation 1 of this section, kg/h. (f) Determine the emission destruction or removal efficiency of the addon control device as the average of the efficiencies determined in the three test runs and calculated in Equation 2 of this section. #### §63.3167 How do I establish the addon control device operating limits during the performance test? During the performance test required by §63.3160 and described in §63.3164 and 63.3166, you must establish the operating limits required by §63.3093 according to this section, unless you have received approval for alternative monitoring and operating limits under §63.8(f) as specified in §63.3093. (a) Thermal oxidizers. If your add-on control device is a thermal oxidizer, establish the operating limit according to paragraphs (a)(1) through (3) of this section. (1) During the performance test, you must monitor and record the combustion temperature at least once every 15 minutes during each of the three test runs. You must monitor the temperature in the firebox of the thermal oxidizer or immediately downstream of the firebox before any substantial heat exchange occurs. (2) Use all valid data collected during the performance test to calculate and record the average combustion temperature maintained during the performance test. This average combustion temperature is the minimum 3-hour average operating limit for your thermal oxidizer. (3) As an alternative, if the latest operating permit issued before April 26, 2007, for the thermal oxidizer at your facility contains recordkeeping and reporting requirements for the combustion temperature that are consistent with the requirements for thermal oxidizers in 40 CFR 60.395(c), then you may set the minimum operating limit for the combustion temperature for each such thermal oxidizer at your affected source at 28 degrees Celsius (50 degrees Fahrenheit) below the average combustion temperature during the performance test of that thermal oxidizer. If you do not have an operating permit for the thermal oxidizer at your facility and the latest construction permit issued before April 26, 2007, for the thermal oxidizer at your facility contains recordkeeping and reporting requirements for the combustion temperature that are consistent with the requirements for thermal oxidizers in 40 CFR 60.395(c), then you may set the minimum operating limit for the combustion temperature for each such thermal oxidizer at your affected source at 28 degrees Celsius (50 degrees Fahrenheit) below the average combustion
temperature during the performance test of that thermal oxidizer. If you use 28 degrees Celsius (50 degrees Fahrenheit) below the combustion temperature maintained during the performance test as the minimum operating limit for a thermal oxidizer, then you must keep the combustion temperature set point on that thermal oxidizer no lower than 14 degrees Celsius (25 degrees Fahrenheit) below the lower of that set point during the performance test for that thermal oxidizer and the average combustion temperature maintained during the performance test for that thermal oxidizer. (b) Catalytic oxidizers. If your add-on control device is a catalytic oxidizer, establish the operating limits according to either paragraphs (b)(1) through (3) or paragraphs (b)(4) through (6) of this section. (1) During the performance test, you must monitor and record the temperature just before the catalyst bed and the temperature difference across the catalyst bed at least once every 15 minutes during each of the three test runs. (2) Use all valid data collected during the performance test to calculate and record the average temperature just before the catalyst bed and the average temperature difference across the catalyst bed maintained during the performance test. The minimum 3-hour average operating limits for your catalytic oxidizer are the average temperature just before the catalyst bed maintained during the performance test of that catalytic oxidizer and 80 percent of the average temperature difference across the catalyst bed maintained during the performance test of that catalytic oxidizer, except during periods of low production, the latter minimum operating limit is to maintain a positive temperature gradient across the catalyst bed. A low production period is when production is less than 80 percent of production rate during the performance test of that catalytic oxidizer. (3) As an alternative, if the latest operating permit issued before April 26, 2007, for the catalytic oxidizer at your facility contains recordkeeping and reporting requirements for the temperature before the catalyst bed that are consistent with the requirements for catalytic oxidizers in 40 CFR 60.395(c), then you may set the minimum operating limits for each such catalytic oxidizer at your affected source at 28 degrees Celsius (50 degrees Fahrenheit) below the average temperature just before the catalyst bed maintained during the performance test for that catalytic oxidizer and 80 percent of the average temperature difference across the catalyst bed maintained during the performance test for that catalytic oxidizer, except during periods of low production the latter minimum operating limit is to maintain a positive temperature gradient across the catalyst bed. If you do not have an operating permit for the catalytic oxidizer at your facility and the latest construction permit issued before April 26, 2007. for the catalytic oxidizer at your facility contains recordkeeping and reporting requirements for the temperature before the catalyst bed that are consistent with the requirements for catalytic oxidizers in 40 CFR 60.395(c), then you may set the minimum operating limits for each such catalytic oxidizer at your affected source at 28 degrees Celsius (50 degrees Fahrenheit) below the average temperature just before the catalyst bed maintained during the performance test for that catalytic oxidizer and 80 percent of the average temperature difference across the catalyst bed maintained during the performance test for that catalytic oxidizer, except during periods of low production the latter minimum operating limit is to maintain a positive temperature gradient across the catalyst bed. A low production period is when production is less than 80 percent of production rate during the performance test. If you use 28 degrees Celsius (50 degrees Fahrenheit) below the average temperature just before the catalyst bed maintained during the performance test as the minimum operating limits for a catalytic oxidizer, then you must keep the set point for the temperature just before the catalyst bed on that catalytic oxidizer no lower than 14 degrees Celsius (25 degrees Fahrenheit) below the lower of that set point during the performance test for that catalytic oxidizer and the average temperature just before the catalyst bed maintained during the performance test for that catalytic oxidizer. (4) As an alternative to monitoring the temperature difference across the catalyst bed, you may monitor the temperature at the inlet to the catalyst bed and implement a site-specific inspection and maintenance plan for your catalytic oxidizer as specified in paragraph (b)(6) of this section. During the performance test, you must monitor and record the temperature just before the catalyst bed at least once every 15 minutes during each of the three test runs. Use all valid data collected during the performance test to calculate and record the average temperature just before the catalyst bed during the performance test. This is the minimum operating limit for your catalytic oxidizer. (5) If the latest operating permit issued before April 26, 2007, for the catalytic oxidizer at your facility contains recordkeeping and reporting requirements for the temperature before the catalyst bed that are consistent with the requirements for catalytic oxidizers in 40 CFR 60.395(c), then you may set the minimum operating limit for each such catalytic oxidizer at your affected source at 28 degrees Celsius (50 degrees Fahrenheit) below the average temperature just before the catalyst bed maintained during the performance test for that catalytic oxidizer. If you do not have an operating permit for the catalytic oxidizer at your facility and the latest construction permit issued before April 26, 2007, for the catalytic oxidizer at your facility contains recordkeeping and reporting requirements for the temperature before the catalyst bed that are consistent with the requirements for catalytic oxidizers in 40 CFR 60.395(c), then you may set the minimum operating limit for each such catalytic oxidizer at your affected source at 28 degrees Celsius (50 degrees Fahrenheit) below the average tem- perature just before the catalyst bed maintained during the performance test for that catalytic oxidizer. If you use 28 degrees Celsius (50 degrees Fahrenheit) below the average temperature just before the catalyst bed maintained during the performance test as the minimum operating limit for a catalytic oxidizer, then you must keep the set point for the temperature just before the catalyst bed on that catalytic oxidizer no lower than 14 degrees Celsius (25 degrees Fahrenheit) below the lower of that set point during the performance test for that catalytic oxidizer and the average temperature just before the catalyst bed maintained during the performance test for that catalytic oxidizer. (6) You must develop and implement an inspection and maintenance plan for your catalytic oxidizer(s) for which you elect to monitor according to paragraph (b)(4) or (b)(5) of this section. The plan must address, at a minimum, the elements specified in paragraphs (b)(6)(i) through (iii) of this section. (i) Annual sampling and analysis of the catalyst activity (i.e., conversion efficiency) following the manufacturer's or catalyst supplier's recommended procedures. If problems are found during the catalyst activity test, you must replace the catalyst bed or take other corrective action consistent with the manufacturer's recommendations. (ii) Monthly external inspection of the catalytic oxidizer system, including the burner assembly and fuel supply lines for problems and, as necessary, adjust the equipment to assure proper air-to-fuel mixtures. (iii) Annual internal inspection of the catalyst bed to check for channeling, abrasion, and settling. If problems are found during the annual internal inspection of the catalyst, you must replace the catalyst bed or take other corrective action consistent with the manufacturer's recommendations. If the catalyst bed is replaced and is not of like or better kind and quality as the old catalyst, then you must conduct a new performance test to determine destruction efficiency according to §63.3166. If a catalyst bed is replaced and the replacement catalyst is of like or better kind and quality as the old catalyst, then a new performance test to determine destruction efficiency is not required and you may continue to use the previously established operating limits for that catalytic oxidizer. (c) Regenerative carbon adsorbers. If your add-on control device is a regenerative carbon adsorber, establish the operating limits according to paragraphs (c)(1) and (2) of this section. (1) You must monitor and record the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle and the carbon bed temperature after each carbon bed regeneration and cooling cycle for the regeneration cycle either immediately preceding or immediately following the performance test. (2) The operating limits for your carbon adsorber are the minimum total desorbing gas mass flow recorded during the regeneration cycle and the maximum carbon bed temperature recorded after the cooling cycle. (d) Condensers. If your add-on control device is a condenser, establish the operating limits according to paragraphs (d)(1) and (2) of this section. (1) During the performance test, you must monitor and record the condenser outlet (product side) gas temperature at least once every 15 minutes during each of the three test runs. (2) Use all valid data collected during the performance test to calculate and record the average condenser outlet (product side) gas temperature maintained during the performance test. This average condenser outlet gas temperature is the maximum 3-hour average operating limit for your condenser. (e) Concentrators. If your add-on control device includes a concentrator, you must establish
operating limits for the concentrator according to paragraphs (e)(1) and (2)of this section. (1) During the performance test, you must monitor and record the desorption gas inlet temperature at least once every 15 minutes during each of the three runs of the performance test. (2) Use all valid data collected during the performance test to calculate and record the average desorption gas inlet temperature. The minimum operating limit for the concentrator is 8 degrees Celsius (15 degrees Fahrenheit) below the average desorption gas inlet temperature maintained during the performance test for that concentrator. You must keep the set point for the desorption gas inlet temperature no lower than 6 degrees Celsius (10 degrees Fahrenheit) below the lower of that set point during the performance test for that concentrator and the average desorption gas inlet temperature maintained during the performance test for that concentrator. (f) Emission capture systems. For each capture device that is not part of a PTE that meets the criteria of §63.3165(a) and that is not capturing emissions from a downdraft spray booth or from a flash-off area or bake oven associated with a downdraft spray booth, establish an operating limit for either the gas volumetric flow rate or duct static pressure, as specified in paragraphs (f)(1) and (2) of this section. The operating limit for a PTE is specified in Table 1 to this subpart. (1) During the capture efficiency determination required by §63.3160 and described in §§63.3164 and 63.3165, you must monitor and record either the gas volumetric flow rate or the duct static pressure for each separate capture device in your emission capture system at least once every 15 minutes during each of the three test runs at a point in the duct between the capture device and the add-on control device inlet. (2) Calculate and record the average gas volumetric flow rate or duct static pressure for the three test runs for each capture device, using all valid data. This average gas volumetric flow rate or duct static pressure is the minimum operating limit for that specific capture device. [69 FR 22623, Apr. 26, 2004, as amended at 72 FR 20235, Apr. 24, 2007] # § 63.3168 What are the requirements for continuous parameter monitoring system installation, operation, and maintenance? (a) General. You must install, operate, and maintain each CPMS specified in paragraphs (c), (e), (f), and (g) of this section according to paragraphs (a)(1) through (6) of this section. You must install, operate, and maintain each CPMS specified in paragraphs (b) and (d) of this section according to paragraphs (a)(3) through (5) of this section. (1) The CPMS must complete a minimum of one cycle of operation for each successive 15-minute period. You must have a minimum of four equallyspaced successive cycles of CPMS operation in 1 hour. (2) You must determine the average of all recorded readings for each successive 3-hour period of the emission capture system and add-on control device operation. (3) You must record the results of each inspection, calibration, and vali- dation check of the CPMS. (4) You must maintain the CPMS at all times and have available necessary parts for routine repairs of the moni- toring equipment. - (5) You must operate the CPMS and collect emission capture system and add-on control device parameter data at all times that a controlled coating operation is operating, except during monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, if applicable, calibration checks and required zero and span adjustments). - (6) You must not use emission capture system or add-on control device parameter data recorded during monitoring malfunctions, associated repairs, out-of-control periods, or required quality assurance or control activities when calculating data averages. You must use all the data collected during all other periods in calculating the data averages for determining compliance with the emission capture system and add-on control device operating limits. - (7) A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the CPMS to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions. Any period for which the monitoring system is out of control and data are not available for required calculations is a deviation from the monitoring requirements. - (b) Capture system bypass line. You must meet the requirements of paragraphs (b)(1) and (2) of this section for each emission capture system that contains bypass lines that could divert emissions away from the add-on control device to the atmosphere. - (1) You must monitor or secure the valve or closure mechanism controlling the bypass line in a nondiverting position in such a way that the valve or closure mechanism cannot be opened without creating a record that the valve was opened. The method used to monitor or secure the valve or closure mechanism must meet one of the requirements specified in paragraphs (b)(1)(i) through (iv) of this section. - (i) Flow control position indicator. Install, calibrate, maintain, and operate according to the manufacturer's specifications a flow control position indicator that takes a reading at least once every 15 minutes and provides a record indicating whether the emissions are directed to the add-on control device or diverted from the add-on control device. The time of occurrence and flow control position must be recorded, as well as every time the flow direction is changed. The flow control position indicator must be installed at the entrance to any bypass line that could divert the emissions away from the addon control device to the atmosphere. - (ii) Car-seal or lock-and-key valve closures. Secure any bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. You must visually inspect the seal or closure mechanism at least once every month to ensure that the valve is maintained in the closed position, and the emissions are not diverted away from the add-on control device to the atmosphere. - (iii) Valve closure monitoring. Ensure that any bypass line valve is in the closed (nondiverting) position through monitoring of valve position at least once every 15 minutes. You must inspect the monitoring system at least once every month to verify that the monitor will indicate valve position. - (iv) Automatic shutdown system. Use an automatic shutdown system in which the coating operation is stopped when flow is diverted by the bypass line away from the add-on control device to the atmosphere when the coating operation is running. You must inspect the automatic shutdown system at least once every month to verify #### §63.3168 that it will detect diversions of flow and shut down the coating operation. - (2) If any bypass line is opened, you must include a description of why the bypass line was opened and the length of time it remained open in the semi-annual compliance reports required in §63.3120. - (c) Thermal oxidizers and catalytic oxidizers. If you are using a thermal oxidizer or catalytic oxidizer as an add-on control device (including those used to treat desorbed concentrate streams from concentrators or carbon adsorbers), you must comply with the requirements in paragraphs (c)(1) through (3) of this section: - (1) For a thermal oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately downstream of the firebox before any substantial heat exchange occurs. - (2) For a catalytic oxidizer, install a gas temperature monitor upstream of the catalyst bed. If you establish the operating parameters for a catalytic oxidizer under §63.3167(b)(1) through (3), you must also install a gas temperature monitor downstream of the catalyst bed. The temperature monitors must be in the gas stream immediately before and after the catalyst bed to measure the temperature difference across the bed. If you establish the operating parameters for a catalytic oxidizer under §63.3167(b)(4) through (6), you need not install a gas temperature monitor downstream of the catalyst bed. - (3) For all thermal oxidizers and catalytic oxidizers, you must meet the requirements in paragraphs (a)(1) through (6) and (c)(3)(i) through (vii) of this section for each gas temperature monitoring device. - (i) Locate the temperature sensor in a position that provides a representative temperature. - (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. - (iii) Shield the temperature sensor system from electromagnetic interference and chemical contaminants. - (iv) If a gas temperature chart recorder is used, it must have a measure- ment sensitivity in the minor division of at least 20 degrees Fahrenheit. - (v) Perform an electronic calibration at least semiannually according to the procedures in the manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor validation check in which a second or redundant temperature sensor placed nearby the process temperature sensor must yield a reading within 30 degrees Fahrenheit of the process temperature sensor reading. - (vi) Conduct calibration and validation checks any time the sensor exceeds the manufacturer's specified maximum operating temperature range or install a new temperature sensor. - (vii) At least monthly, inspect components for integrity and electrical connections for continuity, oxidation, and galvanic corrosion. - (d) Regenerative carbon adsorbers. If you are using a regenerative carbon adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3)
through (5) and (d)(1) and (2) of this section. - (1) The regeneration desorbing gas mass flow monitor must be an integrating device having a measurement sensitivity of plus or minus 10 percent, capable of recording the total regeneration desorbing gas mass flow for each regeneration cycle. - (2) The carbon bed temperature monitor must have a measurement sensitivity of 1 percent of the temperature (as expressed in degrees Fahrenheit) recorded or 1 degree Fahrenheit, whichever is greater, and must be capable of recording the temperature within 15 minutes of completing any carbon bed cooling cycle. - (e) Condensers. If you are using a condenser, you must monitor the condenser outlet (product side) gas temperature and comply with paragraphs (a)(1) through (6) and (e)(1) and (2) of this section. - (1) The gas temperature monitor must have a measurement sensitivity - of 1 percent of the temperature (expressed in degrees Fahrenheit) recorded or 1 degree Fahrenheit, whichever is greater. - (2) The temperature monitor must provide a gas temperature record at least once every 15 minutes. - (f) Concentrators. If you are using a concentrator, such as a zeolite wheel or rotary carbon bed concentrator, you must install a temperature monitor in the desorption gas stream. The temperature monitor must meet the requirements in paragraphs (a)(1) through (6) and (c)(3) of this section. - (g) Emission capture systems. The capture system monitoring system must comply with the applicable requirements in paragraphs (g)(1) and (2) of this section. - (1) For each flow measurement device, you must meet the requirements in paragraphs (a)(1) through (6) and (g)(1)(i) through (iv) of this section. - (i) Locate a flow sensor in a position that provides a representative flow measurement in the duct from each capture device in the emission capture system to the add-on control device. - (ii) Reduce swirling flow or abnormal velocity distributions due to upstream and downstream disturbances. - (iii) Conduct a flow sensor calibration check at least semiannually. - (iv) At least monthly, inspect components for integrity, electrical connections for continuity, and mechanical connections for leakage. - (2) For each pressure drop measurement device, you must comply with the requirements in paragraphs (a)(1) through (6) and (g)(2)(i) through (vi) of this section. - (i) Locate the pressure tap(s) in a position that provides a representative measurement of the pressure drop across each opening you are monitoring. - (ii) Minimize or eliminate pulsating pressure, vibration, and internal and external corrosion. - (iii) Check pressure tap pluggage - (iv) Using an inclined manometer with a measurement sensitivity of 0.0002 inch water, check gauge calibration quarterly and transducer calibration monthly. - (v) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range or install a new pressure sensor. - (vi) At least monthly, inspect components for integrity, electrical connections for continuity, and mechanical connections for leakage. - § 63.3169 What are the requirements for a capture system or add-on control device which is not taken into account when demonstrating compliance with the applicable emission limitations? You may have capture systems or add-on control devices which you choose not to take into account when demonstrating compliance with the applicable emission limitations. For any such capture system or add-on control device, you are not required to comply with the requirements of §§ 63.3093, 63.3100, 63.3110, 63.3120, 63.3130, 63.3131. and 63.3160 through 63.3168 with regard to notification, reporting, recordkeeping, performance tests, monitoring, operating parameters, capture efficiency, add-on control device efficiency, destruction efficiency, or removal efficiency. If, at a later date. you decide to take any such capture system or add-on control device into account when demonstrating compliance with the emission limitations. then at that time you must comply with the requirements of §§ 63.3093, 63.3100, 63.3110, 63.3120, 63.3130, 63.3131, and 63.3160 through 63.3168 with regard to notification, recordkeeping, performance tests, monitoring, operating parameters, capture efficiency, add-on control device efficiency, destruction efficiency, and removal efficiency, as applicable, for that capture system or add-on control device. [72 FR 20235, Apr. 24, 2007] COMPLIANCE REQUIREMENTS FOR THE COMBINED PRIMER-SURFACER, TOP-COAT, FINAL REPAIR, GLASS BONDING PRIMER, AND GLASS BONDING ADHESIVE EMISSION LIMITATIONS AND THE SEPARATE ELECTRODEPOSITION PRIMER EMISSION LIMITATIONS # § 63.3170 By what date must I conduct performance tests and other initial compliance demonstrations? - (a) New and reconstructed affected sources. For a new or reconstructed affected source, you must meet the requirements of paragraphs (a)(1) through (4) of §63.3160. - (b) Existing affected sources. For an existing affected source, you must meet the requirements of paragraphs (b)(1) through (3) of §63.3160. # § 63.3171 How do I demonstrate initial compliance? - (a) You must meet all of the requirements of this section to demonstrate initial compliance. To demonstrate initial compliance, the organic HAP emissions from the combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) must meet the applicable emission limitation in §63.3090(b) or §63.3091(b); and the organic HAP emissions from the electrodeposition primer operation must meet the applicable emissions limitations in §63,3092(a) or - (b) Compliance with operating limits. Except as provided in §63.3160(a)(4), you must establish and demonstrate continuous compliance during the initial compliance period with the operating limits required by §63.3093, using the procedures specified in §§63.3167 and 63.3168. - (c) Compliance with work practice requirements. You must develop, implement, and document your implementation of the work practice plans required by §63.3094(b) and (c) during the initial compliance period, as specified in §63.3130. - (d) Compliance with emission limits. You must follow the procedures in §63.3161(e) through (n), excluding materials used in electrodeposition primer operations, to demonstrate compliance with the applicable emission limit in §63.3090(b) or §63.3091(b). You must follow the procedures in paragraph (e) of this section to demonstrate compliance with the emission limit in §63.3092(a), or paragraphs (f) through (g) of this section to demonstrate compliance with the emission limitations in §63.3092(b). - (e) Determine the mass fraction of each organic HAP in each material used in the electrodeposition primer operation. You must determine the mass fraction of each organic HAP for each material used in the electrodeposition primer operation during the compliance period by using one of the options in paragraphs (e)(1) through (3) of this section. - (1) Method 311 (appendix A to 40 CFR part 63). You may use Method 311 for determining the mass fraction of each organic HAP. - (2) Alternative method. You may use an alternative test method for determining the mass fraction of organic HAP once the Administrator has approved it. You must follow the procedure in §63.7(f) to submit an alternative test method for approval. - (3) Information from the supplier or manufacturer of the material. You may rely on information other than that generated by the test methods specified in paragraphs (e)(1) and (2) of this section, such as manufacturer's formulation data, if it represents each organic HAP that is present at 0.1 percent by mass or more for OSHA-defined carcinogens, as specified in 29 CFR 1910.1200(d)(4), and at 1.0 percent by mass or more for other compounds. If there is a disagreement between such information and results of a test conducted according to paragraph (e)(1) or (2) of this section, then the test method results will take precedence unless after consultation, the facility demonstrates to the satisfaction of the enforcement authority that the facility's data are correct. - (f) Capture of electrodeposition bake oven emissions. You must show that the electrodeposition bake oven meets the criteria in sections 5.3 through 5.5 of Method 204 of appendix M to 40 CFR part 51 and directs all of the exhaust gases from the bake oven to an add-on control device. For purposes of this showing, an electrodeposition bake oven air seal is not considered a natural draft opening provided you demonstrate that the direction of air movement across the interface between the bake oven air seal and the bake oven is into the bake oven. You may use lightweight strips of fabric or paper, or smoke tubes to make such demonstrations. You cannot count air flowing from an electrodeposition bake oven air seal into an electrodeposition bake oven as air flowing through a natural draft opening unless you elect to treat that electrodeposition bake oven air seal as a natural draft opening. (g) Control of electrodeposition bake oven emissions. Determine the efficiency of each control device on each electrodeposition bake oven using the procedures in §§ 63.3164 and 63.3166. (h) Compliance demonstration. To demonstrate initial compliance, the organic HAP emissions from the combined primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to §63.3082(c) must meet the applicable emission limitation in §63.3090(b) or §63.3091(b); the organic HAP
emissions from the electrodeposition primer operation must meet the applicable emissions limitations in §63.3092(a) or (b). You must keep all records as required by §§ 63.3130 and 63.3131. As part of the Notification of Compliance Status required by §63.3110, you must submit a statement that the coating operation(s) was (were) in compliance with the emission limitations during the initial compliance period because the organic HAP emission rate from the combined primer-surfacer. topcoat. final repair, glass bonding primer, and glass bonding adhesive operations plus all coatings and thinners, except for deadener materials and for adhesive and sealer materials that are not components of glass bonding systems, used in coating operations added to the affected source pursuant to \$63.3082(c) was less than or equal to the applicable emission limit in \$63.3090(b) or \$63.3091(b), and the organic HAP emissions from the electrodeposition primer operation met the applicable emissions limitations in \$63.3092(a) or (b), and you achieved the operating limits required by \$63.3093 and the work practice standards required by \$63.3094. [69 FR 22623, Apr. 26, 2004, as amended at 72 FR 20235, Apr. 24, 2007] #### § 63.3172 [Reserved] # § 63.3173 How do I demonstrate continuous compliance with the emission limitations? (a) To demonstrate continuous compliance with the applicable emission limit in §63.3090(b) or §63.3091(b), the organic HAP emission rate for each compliance period determined according to the procedures in §63.3171 must be equal to or less than the applicable emission limit in §63.3090(b) or §63.3091(b). A compliance period consists of 1 month. Each month after the end of the initial compliance period described in §63.3170 is a compliance period consisting of that month. You must perform the calculations in §63.3171 on a monthly basis. (b) If the organic HAP emission rate for any 1 month compliance period exceeded the applicable emission limit in §63.3090(b) or §63.3091(b), this is a deviation from the emission limitation for that compliance period and must be reported as specified in §§63.3110(c)(6) and 63.3120(a)(6). (c) You must meet the requirements of §63.3163(c) through (j). # § 63.3174 What are the requirements for a capture system or add-on control device which is not taken into account when demonstrating compliance with the applicable emission limitations? You may have capture systems or add-on control devices which you choose not to take into account when demonstrating compliance with the applicable emission limitations. For any such capture system or add-on control device, you are not required to comply with the requirements of § 63.3093, 63.3100, 63.3110, 63.3120, 63.3130, 63.3131, and 63.3160 through 63.3168 with regard to notification, reporting, recordkeeping, performance tests, monitoring, operating parameters, capture efficiency, add-on control device efficiency, destruction efficiency, or removal efficiency. If, at a later date, you decide to take any such capture system or add-on control device into account when demonstrating compliance with the emission limitations. then at that time you must comply with the requirements of §§ 63.3093, 63.3100, 63.3110, 63.3120, 63.3130, 63.3131, and 63.3160 through 63.3168 with regard to notification, reporting, recordkeeping, performance tests, monitoring, operating parameters, capture efficiency, add-on control device efficiency, destruction efficiency, and removal efficiency, as applicable, for that capture system or add-on control device. [72 FR 20236, Apr. 24, 2007] OTHER REQUIREMENTS AND INFORMATION # § 63.3175 Who implements and enforces this subpart? (a) This subpart can be implemented and enforced by us. EPA, or a delegated authority such as your State, local, or tribal agency. If the Administrator has delegated authority to your State, local, or tribal agency, then that agency (as well as EPA) has the authority to implement and enforce this subpart. You should contact your EPA Regional Office to find out if implementation and enforcement of this subpart is delegated to your State, local, or tribal agency. (b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under subpart E of this part, the authorities contained in paragraph (c) of this section are retained by the EPA Administrator and are not transferred to the State, local, or tribal agency. (c) The authorities that will not be delegated to State, local, or tribal agencies are listed in paragraphs (c)(1) through (4) of this section: (1) Approval of alternatives to the work practice standards in §63.3094 under §63.6(g). (2) Approval of major alternatives to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90. (3) Approval of major alternatives to monitoring under §63.8(f) and as defined in §63.90. (4) Approval of major alternatives to recordkeeping and reporting under §63.10(f) and as defined in §63.90. # § 63.3176 What definitions apply to this subpart? Terms used in this subpart are defined in the CAA, in the General Provisions of this part, and in this section as follows: Add-on control device means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before discharge to the atmosphere. Add-on control device efficiency means the ratio of the emissions collected or destroyed by an add-on air pollution control device to the total emissions that are introduced into the control device, expressed as a percentage. Adhesive means any chemical substance that is applied for the purpose of bonding two surfaces together. Adhesive and sealer material means adhesives, sealers and thinners added to adhesives or sealers. Anti-chip coating means a specialty type of coating designed to reduce stone chipping damage. Anti-chip coating may be applied to broad areas of the vehicle or to selected vehicle surfaces that are most vulnerable to impingement by stones and other road debris. Anti-chip coating is typically applied after the electrodeposition primer and before the topcoat. Anti-chip coating is a type of primer-surfacer. Automobile means a motor vehicle designed to carry up to eight passengers, excluding vans, sport utility vehicles, and motor vehicles designed primarily to transport light loads of property. See also Light-duty truck. Automobile and light-duty truck assembly plant means a facility which assembles automobiles or light-duty trucks. including coating facilities and processes. Bake oven air seal means an entry or entry vestibule to or an exit or exit vestibule from a bake oven which isolates the bake oven from the area immediately preceding (for an entry or entry vestibule) or immediately following (for an exit or exit vestibule) the bake oven. No significant VOC generating activity takes place in a bake oven air scal. Fresh air is supplied into a bake oven air seal and is then directed in part into the bake oven and in part into the area immediately preceding or immediately following the bake oven. All types of bake ovens, including ovens associated with spray booths and electrodeposition primer bake ovens, may have bake oven air seals. Basecoat/clearcoat means a topcoat system applied to exterior and selected interior vehicle surfaces primarily to provide an aesthetically pleasing appearance and acceptable durability performance. It consists of a layer of pigmented basecoat color coating, followed directly by a layer of a clear or semitransparent coating. It may include multiple layers of color coats or tinted clear materials. Blackout coating means a type of specialty coating applied on selected vehicle surfaces (including areas of the engine compartment visible through the grill, and window and pillar trim) to provide a cosmetic appearance. Typically black or dark gray color. Blackout coating may be included in either the primer-surfacer or topcoat operations. Body part means exterior parts such as hoods, fenders, doors, roof, quarter panels, decklids, tail gates, and cargo beds. Body parts were traditionally made of sheet metal, but now are also made of plastic. Bumpers, fascia, and cladding are not body parts. Capture device means a hood, enclosure, room, floor sweep, or other means of containing or collecting emissions and directing those emissions into an add-on air pollution control device. Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or more capture devices intended to collect emissions generated by a coating operation in the use of coatings. both at the point of application and at subsequent points where emissions from the coatings occur, such as flash-off, drying, or curing. As used in this subpart, multiple capture devices that collect emissions generated by a coating operation are considered a single capture system. Catalytic oxidizer means a device for oxidizing pollutants or waste materials via flame and heat incorporating a catalyst to aid the combustion at lower operating temperature. Chip resistant edge primer means an anti-chip coating applied to the leading edge of parts such as the hood or roof. Cleaning material means a solvent used to remove contaminants and other materials such as dirt, grease, oil, and dried (e.g., depainting) or wet coating from a substrate before or after coating application: or from equipment associated with a coating operation, such as spray booths, spray guns, tanks, and hangers. Thus, it includes any cleaning material used on substrates or equipment or both. Coating means a material applied to a substrate for decorative, protective. Or functional purposes. Such materials include, but are not limited to, paints, sealants, caulks, inks, adhesives, primers, deadeners, and maskants. Decorative, protective, or functional
materials that consist only of protective oils for metal, acids, bases, or any combination of these substances are not considered coatings for the purposes of this subpart. Coating operation means equipment used to apply coating to a substrate (coating application) and to dry or cure the coating after application. A single coating operation always includes at least the point at which a coating is applied and all subsequent points in the affected source where organic HAP emissions from that coating occur. There may be multiple coating operations in an affected source. Coating application with hand-held nonrefillable aerosol containers, touchup bottles, touchup markers, marking pens, or pinstriping equipment is not a coating operation for the purposes of this subpart. The application of temporary materials such as protective oils and "travel waxes" that are designed to be removed from the vehicle before it is delivered to a retail purchaser is not a coating operation for the purposes of this subpart. Coating solids means the nonvolatile portion of the coating. Container means a receptacle, such as a can, vessel, tote, or tank, in which coatings, solvents or cleaning materials are held, stored, mixed, or carried. Continuous parameter monitoring system (CPMS) means the total equipment that may be required to meet the data acquisition and availability requirements of this subpart; used to sample, condition (if applicable), analyze, and provide a record of coating operation, or capture system, or add-on control device parameters. Controlled coating operation means a coating operation from which some or all of the organic HAP emissions are routed through a capture system and an add-on control device which are taken into account when demonstrating compliance with an emission limitation in this subpart. Day tank means tank with agitation and pumping system used for mixing and continuous circulation of coatings from the paint storage area to the spray booth area of the paint shop. Deadener means a specialty coating applied to selected vehicle surfaces primarily for the purpose of reducing the sound of road noise in the passenger compartment. Deadener material means deadener and thinner added to deadener. Deposited solids means the coating solids which remain on the substrate or object being painted. Deviation means any instance in which an affected source subject to this subpart, or an owner or operator of such a source fails to meet any requirement or obligation established by this subpart including, but not limited to, any emission limit, operating limit, or work practice standard; fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or fails to meet any emission limit or operating limit or work practice standard in this subpart during startup, shutdown, or malfunction, regardless of whether or not such failure is permitted by this subpart. A deviation is not always a violation. Electrodeposition primer or electrocoating primer means a process of applying a protective, corrosion-resistant waterborne primer on exterior and interior surfaces that provides thorough coverage of recessed areas. It is a dip coating method that uses an electrical field to apply or deposit the conductive coating onto the part. The object being painted acts as an electrode that is oppositely charged from the particles of paint in the dip tank. Also referred to as E-Coat. Uni-Prime, and ELPO Primer. Emission limitation means an emission limit, operating limit, or work practice standard. Final repair means the operations performed and coating(s) applied to completely-assembled motor vehicles or to parts that are not yet on a completely assembled motor vehicle to correct damage or imperfections in the coating. The curing of the coatings applied in these operations is accomplished at a lower temperature than that used for curing primer-surfacer and topcoat. This lower temperature cure avoids the need to send parts that are not yet on a completely assembled vehicle through the same type of curing process used for primer-surfacer and topcoat and is necessary to protect heat sensitive components on completely assembled motor vehicles. Flash-off area means the portion of a coating process between the coating application station and the next coating application station or drying oven where solvent begins to evaporate from the coated vehicle. Glass bonding adhesive means an adhesive used to bond windshield or other glass to an automobile or light-duty truck body. Glass bonding primer means a primer applied to windshield or other glass, or to body openings to prepare the glass or body openings for the application of glass bonding adhesive, or the installation of adhesive bonded glass. Guide coat means Primer-surfacer. In-line repair means the operation performed and coating(s) applied to correct damage or imperfections in the topcoat on parts that are not yet on a completely assembled motor vehicle. The curing of the coatingspplied in these operations is accomplished at essentially the same temperature as that used for curing the previously applied topcoat. Also referred to as high bake repair or high bake reprocess. In-line repair is considered part of the topcoat operation. Light-duty truck means vans, sport utility vehicles, and motor vehicles designed primarily to transport light loads of property with gross vehicle weight rating of 8,500 lbs or less. Lower body anti-chip coating means an anti-chip coating applied to lower body surfaces such as rocker panels, valence panels, lower portions of doors, or lower portions of fenders. Manufacturer's formulation data means data on a material (such as a coating) that are supplied by the material manufacturer based on knowledge of the ingredients used to manufacture that material, rather than based on testing of the material with the test methods specified in §§63.3151 and 63.3161. Manufacturer's formulation data may include, but are not limited to, information on density, organic HAP content, volatile organic matter content, and coating solids content. Mass fraction of organic HAP means the ratio of the mass of organic HAP to the mass of a material in which it is contained, expressed as kg of organic HAP per kg of material. Month means a calendar month or a pre-specified period of 28 days to 35 days to allow for flexibility in record-keeping when data are based on a business accounting period. Organic HAP content means the mass of organic HAP per mass of coating material. Other motor vehicle means a self-propelled vehicle designed for transporting persons or property on a street or highway that has a gross vehicle weight rating over 8,500 pounds. You may choose to make the coating of other motor vehicles subject to this subpart pursuant to §63.3082(c). Other motor vehicle assembly plant means a facility which assembles other motor vehicles, including coating facilities and processes. Paint line means a set of coating operations which includes a topcoat operation and, if present, includes electrodeposition primer, primer-surfacer, final repair, glass bonding primer and glass bonding adhesive operations in which the same new automobile or new light-duty truck bodies, or body parts for new automobiles, or new light-duty trucks are coated. The most typical paint line consists of a set of electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, and glass bonding adhesive operations in which the same new automobile or new light-duty truck bodies are coated. Paint shop means the collection of all areas at the facility in which new automobile or new light-duty truck bodies, or body parts for new automobiles or new light-duty trucks are phosphated and coated (including application, curing of flash-off, drying and electrodeposition primer, primer-surfacer, topcoat, final repair, glass bonding primer, glass bonding adhesive, deadener, adhesives and sealers); all coating operations added to the affected source pursuant to §63.3082(c); all areas at the facility in which substrates or equipment are cleaned relating to the coating of new automobile or new light-duty truck bodies, the coating of body parts for new automobiles or new light-duty trucks, or coating operations added to the affected source pursuant to §63.3082(c); and all areas at the facility used for storage, mixing. conveying and waste handling of coatings, thinners and cleaning materials related to the coating of new automobile or new light-duty truck bodies, the coating of body parts for new automobiles or new light-duty trucks, or coating operations added to the affected source pursuant to §63.3082(c). If there is no application of topcoat to new automobile or new light-duty truck bodies, or body parts for new automobiles or new light-duty trucks at the facility, then for purposes of this subpart the facility does not have a paint shop. Permanent total enclosure (PTE) means a permanently installed enclosure that meets the criteria of Method 204 of appendix M, 40 CFR part 51, for a PTE and that directs all the exhaust gases from the enclosure to an add-on control device. Plastic or composites molding facility means a facility where the purchase cost of capital equipment used for plastic or composites molding, including presses, tooling, and associated material processing and handling equipment, is greater than the purchase cost of capital equipment used for the surface coating of new automobile or new light-duty truck bodies or body parts for new automobiles or new light-duty trucks. Primer-surfacer means an intermediate protective coating applied on the electrodeposition primer and under the topcoat. Primer-surfacer provides adhesion, protection, and appearance properties to the total finish. Primer-surfacer may also be called guide coat or surfacer. Anti-chip coating
is a type of primer-surfacer. Purge/clean operation means the process of flushing paint out and cleaning the spray lines when changing colors or to remove undesired material. It includes use of air and solvents to clean the lines Purge capture means the capture of purge solvent and materials into a closed collection system immediately after purging the system. It is used to prevent the release of organic HAP emissions and includes the disposal of the captured purge material. Purge material means the coating and associated cleaning solvent materials expelled from the spray system during the process of cleaning the spray lines and applicators when color-changing or to maintain the cleanliness of the spray system. Protective oil means an organic material that is applied to metal for the purpose of providing lubrication or protection from corrosion without forming a solid film. This definition of protective oil includes, but is not limited to, lubricating oils, evaporative oils (including those that evaporate completely), and extrusion oils. Research or laboratory operations means surface coating for which the primary purpose is research and development of new processes and products, that is conducted under the close supervision of technically trained personnel, and that is not part of the manufacture of final or intermediate prod- ucts for commercial purposes, except in a de minimis manner. Responsible official means responsible official as defined in 40 CFR 70.2. Sealer means a high solids, high viscosity material, generally, but not always, applied in the paint shop after the body has received an electrodeposition primer coating. The primary purpose of sealers is to fill body joints completely so that there is no intrusion of water, gases or corrosive materials into the passenger area of the body compartment. Also referred to as sealants. Spray booth means a ventilated structure housing automatic and/or manual spray application equipment for coating operations. Includes facilities for the capture and entrapment of particulate overspray. Spray booth air seal means an entry or entry vestibule to or exit or exit vestibule from a spray booth which isolates the spray booth from the area immediately preceding (for an entry or entry vestibule) or immediately following (for an exit or exit vestibule) the spray booth. No coating application or other VOC generating activity takes place in a spray booth air seal. Fresh air is supplied into a spray booth air seal and is then directed in part into the spray booth and in part into the area immediately preceding or immediately following the spray booth. Startup, initial means the first time equipment is used in a facility to produce a salable product. Surface preparation means use of a cleaning material on a portion of or all of a substrate. This includes use of a cleaning material to remove dried coating, which is sometimes called "depainting." Surfacer means Primer-surfacer. Tack-wipe means solvent impregnated cloth used to remove dust from surfaces prior to application of coatings. Temporary total enclosure means an enclosure constructed for the purpose of measuring the capture efficiency of pollutants emitted from a given source as defined in Method 204 of appendix M, 40 CFR part 51. Thermal oxidizer means a device for oxidizing air pollutants or waste materials via flame and heat. Thinner means an organic solvent that is added to a coating after the coating is received from the supplier. Topcoat means the final coating system applied to provide the final color and/or a protective finish. The topcoat may be a monocoat color or basecoat/clearcoat system. In-line repair and two-tone are part of topcoat. Total volatile hydrocarbon (TVH) means the total amount of nonaqueous volatile organic matter determined according to Methods 204 and 204A through F of appendix M to 40 CFR part 51 and substituting the term TVH each place in the methods where the term VOC is used. The TVH includes both VOC and non-VOC. Touchup bottle means a coating container with a volume of 0.25 liter or less used with a brush or other non-atomizing applicator. Transfer efficiency means the ratio of the amount of coating solids deposited onto the surface of the object to the total amount of coating solids sprayed while applying the coating to the object. Uncontrolled coating operation means a coating operation from which none of the organic HAP emissions are routed through an emission capture system and add-on control device. Underbody anti-chip coating means an anti-chip coating applied to the underbody or wheel wells primarily for the purpose of protecting these areas of the vehicle from stone chipping. Volatile organic compound (VOC) means any compound defined as VOC in 40 CFR 51.100(s). Volume fraction of coating solids means the ratio of the volume of coating solids (also known as volume of nonvolatiles) to the volume of coating; liters of coating solids per liter of coating [69 FR 22623, Apr. 26, 2004, as amended at 71 FR 76927, Dec. 22, 2006; 72 FR 20236, Apr. 24, 2007] TABLE 1 TO SUBPART IIII OF PART 63—OPERATING LIMITS FOR CAPTURE SYSTEMS AND ADD-ON CONTROL DEVICES If you are required to comply with operating limits by 63.3093, you must comply with the applicable operating limits in the following table | For the following device | You must meet the following operating limit | And you must demonstrate continuous compli-
ance with the operating limit by | |--------------------------|--|---| | 1. Thermal oxidizer | The average combustion temperature in any 3-hour period must not fall below the combustion temperature limit established according to § 63.3167(a). | Collecting the combustion temperature data according to §63.3168(c); Reducing the data to 3-hour block averages; and liii. Maintaining the 3-hour average combustion temperature at or above temperature limit. | | 2. Catalytic oxidizer | The average temperature measured just be-
fore the catalyst bed in any 3-hour period must
not fall below the limit established according to
§63.3167(b); and either. | | | | b. Ensure that the average temperature dif-
ference across the catalyst bed in any 3-hour
period does not fall below the temperature dif-
ference limit established according to
§63.3167(b)(2); or. | i. Collecting the temperature data according to \$63.3168(c); ii. Reducing the data to 3-hour block averages: and iii. Maintaining the 3-hour average temperature difference at or above the temperature difference limit; or | # Pt. 63, Subpt. IIII, Table 1 # 40 CFR Ch. I (7-1-17 Edition) | For the following device | You must meet the following operating limit | And you must demonstrate continuous compli-
ance with the operating limit by | |--|---|---| | | c. Develop and implement an inspection an maintenance plan according to § 63,3167(b)(4 | d i Maintaining on un te data laccostica suction | | Regenerative carbon
adsorber, | a. The total regeneration desorbing ges (e.g. steam or nitrogen) mass flow for each carbor bed regeneration cycle must not fall below the total regeneration desorbing gas mass flow limit established according to § 63.3167(c). b. The temperature of the carbon bed after completing each regeneration and any cooling cycle must not exceed the carbon bed temperature imit established according to § 63.3167(c). | (e.g., steam or nitrogen) mass flow for each repeneration cycle according to § 63.3168(d); and ii. Maintaining the total regeneration desorbing gas mass flow at or above the mass flow limit. i. Measuring the temperature of the carbon bed after completing each regeneration and any cooling cycle according to § 63.3168(d); and | | 4. Condenser | The average condenser outlet (product side) gas temperature in any 3-hour period must not exceed the temperature limit established according to § 63.3167(d). | i. Collecting the condenser outlet (product side) gas temperature according to § 63.3168(e); ii. Reducing the data to 3-hour block averages; and iii. Maintaining the 3-hour average gas temperature at the outlet at or below the temperature limit. | | Concentrators, includ-
ing zeolite wheels and
rolary carbon
adsorbers. | The average description gas inlet temperature in any 3-hour period must not fall below the limit established according to § 63.3167(e). | i. Collecting the temperature data according to §63.3163(f): ii. Reducing the data to 3-hour block averages; and iii. maintaining the 3-hour average temperature at or above the temperature limit. | | i.
Emission capture system that is a PTE. | a. The direction of the air flow at all times must be into the enclosure; and either. b. The average facial velocity of air through all tatural draft openings in the enclosure must be at least 200 feet per minute; or. c. The pressure drop across the enclosure must be at least 0.007 inch water, as established in Method 204 of appendix M to 40 CFR part 51. | i. Collecting the direction of air flow, and either
the facial velocity of air through all natural
draft openings according to §63.3168(g)(1) or
the pressure drop across the enclosure ac-
cording to §63.3168(g)(2); and
ii. Maintaining the facial velocity of air flow
through all natural draft openings or the pres-
sure drop at or above the facial velocity limit
or pressure drop limit, and maintaining the di-
rection of air flow into the enclosure at all
times. | | Emission capture system that is not a PTE. | static pressure in each duct between a capture device and add-on control device inlet in any 3-hour period must not fall below the average volumetric flow rate or duct static pressure | i. Collecting the gas volumetric flow rate or duct static pressure for each capture device according to § 63.3168(g); ii. Reducing the data to 3-hour block averages: and iii. Maintaining the 3-hour average gas volumetric flow rate or duct static pressure for each capture device at or above the gas volumetric flow rate or duct static pressure limit. | $[69\;\mathrm{FR}\;22623,\,\mathrm{Apr},\,26,\,2004,\,\mathrm{as}\;\mathrm{amended}\;\mathrm{at}\;72\;\mathrm{FR}\;20236,\,\mathrm{Apr},\,24,\,2007]$ TABLE 2 TO SUBPART IIII OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART IIII OF PART 63 You must comply with the applicable General Provisions requirements according to the following table | Citation | Subject | Applicable to subpart IIII | Explanation | | |-----------------------------------|--|----------------------------|--|--| | 200 4(4)(4) (10) | General Applicability | Yes. | | | | 63.1(a)(1)—(12)
63.1(b)(1)—(3) | Initial Applicability Determination | Yes | Applicability to subpart IIII is
also specified in §63.3081. | | | 63.1(c)(1) | Applicability After Standard Es-
tablished. | Yes. | and authors to | | | 63.1(c)(2) | Applicability of Permit Program for Area Sources. | No | Area sources are not subject to
subpart IIII. | | | 63.1(c)(5) | Extensions and Notifications | Yes. | | | | 63.1(e) | Applicability of Permit Program
Before Relevant Standard is
Set. | Yes. | and the way are and | | | 63.2 | Definitions | Yes | Additional definitions are speci-
fied in § 63.3176. | | | 63.3(a)-(c) | Units and Abbreviations | Yes. | | | | 63.4(a)(1)-(5) | Prohibited Activities | Yes. | | | | 63.4(b)-(c) | Circumvention/Fragmentation | Yes. | | | | 63.5(a) | Preconstruction Review Applica-
bility. | Yes. | | | | §63.5(b)(1)-(6) | Requirements for Existing.
Newly Constructed, and Re-
constructed Sources. | Yes. | | | | § 63.5(d) | Application for Approval of Con-
struction/Reconstruction. | Yes. | | | | § 63.5(e) | Approval of Construction/Recon-
struction. | Yes. | | | | § 63.5(f) | Approval of Construction/Reconstruction Based on Prior State Review. | Yes. | | | | §63.6(a) | Compliance With Standards and
Maintenance Requirements—
Applicability. | Yes. | | | | § 63.6(b)(1)–(7) | Heconstructed cources. | Yes | Section 63.3083 specifies the compliance dates. | | | § 63.6(c)(1)-(5) | Sources. | Yes | Section 63.3083 specifies the compliance dates. | | | §63.6(e)(1)-(2) | Operation and Maintenance | Yes. | D. I uning on odd-c | | | § 63.6(e)(3) | SSMP | Yes | Only sources using an add-o
control device to comply wit
the standard must complet
SSMP. | | | § 63.6(i)(1) | Compliance Except During Start-
up, Shutdown, and Mathunc-
tion. | Yes | Applies only to sources using a
add-on control device to comply with the standards. | | | § 63.6(f)(2)—(3) | | Yes. | | | | §63.6(g)(1)-(3) | | . Yes. | | | | § 63.6(h) | | . No | Subpart IIII does not establi-
opacity standards and do-
not require continuous opac
monitoring systems (COMS). | | | § 63.6(i) | . Presidential Compliance Exemp | Yes. | | | | - | tion. | 1 | A-stice to all affected course | | | § 63.7(a)(1) | Performance Test Recuire ments—Applicability. | Yes | Applies to all affected source
Additional requirements of
performance testing are spe
filed in §§ 63.3164 a
63.3166. | | # 40 CFR Ch. I (7-1-17 Edition) | Citation | Subject | Applicable to
subpart IIII | Explanation | |-----------------|--|--|---| | §63.7(a)(2) | ments—Dates. | · Yes , | Applies only to performance tests for capture system and control device efficiency at sources using these to comply with the standards. Section 63.3160 specifies the schedule for performance test requirements that are earlier than those specified in \$63.7(a)(2). | | §63.7(a)(3) | Performance Tests Required By
the Administrator. | Yes. | 900.7(a)(2). | | § 63.7(b)-(e) | Performance Test Recuire-
ments—Notification, Quality
Assurance, Facilities Nec-
essary for Safe Testing Condi-
tions During Test. | , , min., min. | tests for capture system and
add-on control device effi-
ciency at sources using these | | § 63.7(f) | Performance Test Recuire-
ments—Use of Alternative
Test Method. | Yes | to comply with the standards. Applies to all test methods except those used to determine | | § 63.7(g)—(h) | | Yes | capture system efficiency. Applies only to performance tests for capture system and add-on control device efficiency at sources using these | | §63.8(a)(1)-(3) | Monitoring Requirements—Applicability. | Yes | to comply with the standards.
Applies only to monitoring of
capture system and add-on
control device efficiency at
sources using these to comply
with the standards. Additional
requirements for monitoring
are specified in §6.3-168. | | § 63.8(a)(4) | Additional Monitoring Recuire-
ments. | No | Subpart IIII does not have moni-
toring requirements for flares. | | § 63.8(b) | Conduct of Monitoring | Yes.
Yes | Applies only to monitoring of capture system and add-on control device efficiency at sources using these to comply with the standards. Additional requirements for CMS operations and maintenance are | | §63.8(c)(4) | CMS | No | specified in §63.3168. Section 63.3168 specifies the requirements for the operation of CMS for capture systems and add-on control devices at sources using these to comply | | § 63.89(c)(5) | COMS | No | with the standards.
Subpart IIII does not have opac-
ity or visible emission stand- | | §63.8(c)(6) | CMS Requirements | No | ards. Section 63.3168 specifies the requirements for monitoring systems for capture systems and add-on control devices at sources using these to comply with the standards. | | 63.8(c)(8) | CMS Out-of-Control Periods
CMS Out-of-Control Periods Re-
porting. | No | Section 63.3120 requires report-
ing of CMS out-of-control pen- | | 63.8(d)-(e) | Quality Control Program and CMS Performance Evaluation. | No | ods. Subpart IIII does not require the use of continuous emissions | | 63.8(f)(1)–(5) | Use of an Alternative Monitoring Method. | Yes. | monitoring systems. | | 63.8(f)(6) | Atternative to
Relative Accuracy Test. | No | Subpart IIII does not require the use of continuous emissions | | 63.8(g)(1)-(5) | Data Reduction | No | monitoring systems. Sections 63.3167 and 63.3168 specify monitoring data reduc- tion. | | Gitation | Subject | Applicable to subpart IIII | Explanation | | |--|--|----------------------------|--|--| | § 63.9(a)—(d) | | Yes.
Yes | Applies only to capture system and add-on control device performance tests at sources using these to comply with the standards. | | | § 63.9(f) | Notification of Visible Emissions/
Opacity Test. | No | Subpart Itil does not have opac-
ity or visible emission stand-
ards. | | | §63.9(g)(1)–(3) | Additional Notifications When Using CMS. | No | Subpart IIII does not require the
use of continuous emissions
monitoring systems. | | | §63.9(h) | Notification of Compliance Status. | Yes | Section 63.3110 specifies the
dates for submitting the notifi-
cation of compliance status. | | | § 63.9(i) | Adjustment of Submittal Cead-
fines. | Yes | | | | § 63.9(j)
§ 63.10(a) | Change in Previous Information
Recordkeeping/Reporting—Ap-
plicability and General Infor-
mation. | Yes.
Yes. | | | | § 63.10(b)(1) | General Recordkeeping Requirements. | Yes | Additional requirements are specified in §§ 63.3130 and 63.3131. | | | §63.10(b)(2)(i)-(v) | Recordkeeping Relevant to
Startup, Shutdown, and Mal-
function Periods and CMS. | Yes | Requirements for startup, shul-
down, and malfunctior
records only apply to capture
systems and edd-on contro
devices used to comply with
the standards. | | | § 63.10(b)(2)(vi) (xi)
§ 63.10(b)(2)(xii) | Records | Yes. | | | | § 63.10(b)(2)(xiii) | | No | Subpart IIII does not require the
use of continuous emissions
monitoring systems. | | | § 63.10(b)(2)(xiv)
§ 63.10(b)(3) | Recordkeeping Requirements for Applicability Determina- | Yes.
Yes. | | | | § 63.10(c)(1)~(6) | Additional Recordkeeping Re-
quirements for Sources with
CMS. | Yes. | | | | §63.10(c)(7)-(8) | *************************************** | No | The same records are required in § 63.3120(a)(6). | | | § 63.10(c)(9)-(15)
§ 63.10(d)(1) | General Reporting Recuire-
ments. | Yes | Additional requirements are specified in § 63.3120. | | | § 63.10(d)(2) | | Yes | Additional requirements an
specified in §63.3120(b). | | | § 63.10(d)(3) | | No | Subpart IIII does not require opacity or visible emission observations. | | | § 63.10(d)(4) | Progress Reports for Sources
With Compliance Extensions. | Yes. | | | | § 63.10(d)(5) | | Yes | Applies only to capture system
and add-on control device
used to comply with the
standards. | | | §63.10(e)(1)–(2) | . Additional CMS Reports | No | The state of s | | | §63.10(e)(3) | . Excess Emissions/CMS Per-
formance Reports. | No | | | | §63.10(e)(4) | COMS Data Reports | No | | | | § 63.10(l) | er. | 1 | | | | §63.11 | Control Device Requirements Flares. | | . Subpart IIII does not specify us
of flares for compliance. | | | § 63.12
§ 63.13 | State Authority and Delegations | Yes.
Yes. | 1 | | ## Pt. 63, Subpt. IIII, Table 3 # 40 CFR Ch. I (7-1-17 Edition) | Citation | Subject | Applicable to subpart IIII | Explanation | |--------------------|--|----------------------------|-------------| | § 63.14
§ 63.15 | Incorporation by Reference
Availability of Information/Confidentiality. | | | #### TABLE 3 TO SUBPART IIII OF PART 63—DEFAULT ORGANIC HAP MASS FRACTION FOR SOLVENTS AND SOLVENT BLENDS You may use the mass fraction values in the following table for solvent blends for which you do not have test data or manufacturer's formulation data | Solvent/solvent blend | CAS. No. | Average
organic HAP
mass fraction | Typical organic HAP, percent by mass | |--|---------------------|---|--------------------------------------| | 1. Toluene | 108-88-3 | 1.0 | Toluene. | | 2. Xylene(s) | 1330-20-7 | 1.0 | Xylenes, ethylbenzene. | | 3. Hexane | 110-54-3 | 0.5 | n-hexane. | | 4. n-Hexane | 110-54-3 | 1.0 | n-hexane. | | 5. Ethylbenzene | 100-41-4 | 1.0 | Ethylbenzene, | | 5. Aliphatic 140 | ****************** | 0 | None, | | 7. Aromatic 100 | ******************* | 0.02 | 1% xylene, 1% cumene. | | B. Aromatic 150 | ***************** | 0.09 | Naphthalene, | | 9. Aromatic naphtha | 64742-95-6 | 0.02 | 1% xylene, 1% cumene. | | 10. Aromatic solvent | 64742-94-5 | 0.1 | Naphthalene. | | 11. Exempt mineral spirits | 8032-32-4 | 0 | None, | | 12. Ligroines (VM & P) | 8032-32-4 | 0 | None. | | 13. Lactol spirits | 64742-89-6 | 0.15 | Toluene. | | 14. Low aromatic white spirit | 64742-82-1 | 0 | None. | | 5. Mineral spirits | 64742-88-7 | 0.01 | Xylenes. | | 16. Hydrotreated naphtha | 64742-48-9 | 0 | None. | | 7. Hydrotreated light distillate | 64742-47-8 | 0.001 | Toluene. | | 8. Stoddard solvent | 8052-41-3 | 0.01 | Xylenes. | | Super high-flash naphtha | 64742-95-6 | 0.05 | Xylenes. | | 20. Varsol * solvent | 8052-49-3 | 0.01 | 0.5% xylenes, 0.5% ethylbenzene. | | 1. VM & P naphtha | 64742-89-8 | 0.06 | 3% toluene, 3% xylene. | | 2. Petroleum distillate mixture | 68477-31-6 | 0.08 | 4% naphthalene, 4% biphenyl. | TABLE 4 TO SUBPART IIII OF PART 63—DEFAULT ORGANIC HAP MASS FRACTION FOR PETROLEUM SOLVENT GROUPS A You may use the mass fraction values in the following table for solvent blends for which you do not have test data or manufacturer's formulation data | Solvent type | Average
organic HAP
mass fraction | Typical organic HAP, percent by mass | |------------------------|---|--| | Aliphatic ^b | 0.03
0.06 | 1% Xylene, 1% Toluene, and 1% Ethylbenzene.
4% Xylene, 1% Toluene, and 1% Ethylbenzene. | ^{*}Use this table only if the solvent blend does not match any of the solvent blends in Table 3 to this subpart, and you only know whether the blend is aliphatic or aromatic. *E.g., Mineral Spirits 135, Mineral Spirits 150 EC, Naphtha, Mixed Hydrocarbon, Aliphatic Hydrocarbon, Aliphatic Naphtha, Naphthol Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend. *E.g., Medium-flash Naphtha, High-flash Naphtha, Aromatic Naphtha, Light Aromatic Naphtha, Light Aromatic Hydrocarbons, Light Aromatic Solvent. APPENDIX A TO SUBPART IIII OF PART 63-DETERMINATION OF CAPTURE EF-FICIENCY OF AUTOMOBILE AND LIGHT-DUTY TRUCK SPRAY BOOTH EMIS-SIONS FROM SOLVENT-BORNE COAT-INGS USING PANEL TESTING 1.0 Applicability, Principle, and Summary of Procedure. 1.1 Applicability. This procedure applies to the determination of capture efficiency of automobile and light-duty truck spray booth emissions from solvent-borne coatings using panel testing. This procedure can be used to determine capture efficiency for partially controlled spray booths (e.g., automated spray zones controlled and manual spray zones not controlled) and for fully controlled spray booths. 1.2 Principle. 1.2.1 The volatile organic compounds (VOC) associated with the coating solids deposited on a part (or panel) in a controlled spray booth zone (or group of contiguous controlled spray booth zones) partition themselves between the VOC that volatilize in the controlled spray booth zone (principally between the spray gun and the part) and the VOC that remain on the part (or panel) when the part (or panel) leaves the controlled spray booth zone. For solventborne coatings essentially all of the VOC associated with the coating solids deposited on a part (or panel) in a controlled spray
booth zone that volatilize in the controlled spray booth zone pass through the waterwash and are exhausted from the controlled spray booth zone to the control device. 1.2.2 The VOC associated overspray coating solids in a controlled spray booth zone partition themselves between the VOC that volatilize in the controlled spray booth zone and the VOC that are still tied to the overspray coating solids when the overspray coating solids hit the waterwash. For solvent-borne coatings almost all of the VOC associated with the overspray coating solids that volatilize in the controlled spray booth zone pass through the waterwash and are exhausted from the controlled spray booth zone to the control device. The exact fate of the VOC still tied to the overspray coating solids when the overspray coating solids hit the waterwash is unknown. This procedure assumes that none of the VOC still tied to the overspray coating solids when the overspray coating solids hit the waterwash are captured and delivered to the control device. Much of this VOC may become entrained in the water along with the overspray coating solids. Most of the VOC that become entrained in the water along with the overspray coating solids leave the water, but the point at which this VOC leave the water is unknown. Some of the VOC still tied to the overspray coating solids when the overspray coating solids hit the waterwash may pass through the waterwash and be exhausted from the controlled spray booth zone to the control device. 1.2.3 This procedure assumes that the portion of the VOC associated with the overspray coating solids in a controlled spray booth zone that volatilizes in the controlled spray booth zone, passes through the waterwash and is exhausted from the controlled spray booth zone to the control device is equal to the portion of the VOC associated with the coating solids deposited on a part (or panel) in that controlled spray booth zone that volatilizes in the controlled spray booth zone, passes through the waterwash, and is exhausted from the controlled spray booth zone to the control device. This assumption is equivalent to treating all of the coating solids sprayed in the controlled spray booth zone as if they are deposited coating solids (i.e., assuming 100 percent transfer efficiency) for purposes of using a panel test to determine spray booth capture efficiency. 1.2.4 This is a conservative (low) assumption for the portion of the VOC associated with the overspray coating solids in a controlled spray booth zone that volatilizes in the controlled spray booth zone. Thus, this assumption results in an underestimate of conservative capture efficiency. overspray coating solids have more travel time and distance from the spray gun to the waterwash than the deposited coating solids have between the spray gun and the part (or panel). Therefore, the portion of the VOC associated with the overspray coating solids in a controlled spray booth zone that volatilizes in the controlled spray booth zone should be greater than the portion of the VOC associated with the coating solids deposited on a part (or panel) in that controlled spray booth zone that volatilizes in that controlled spray booth zone. 1.3 Summary of Procedure. 1.3.1 A panel test is performed to determine the mass of VOC that remains on the panel when the panel leaves a controlled spray booth zone. The total mass of VOC associated with the coating solids deposited on the panel is calculated. 1.3.2 The percent of the total VOC associated with the coating solids deposited on the panel in the controlled spray booth zone that remains on the panel when the panel leaves the controlled section of the spray booth is then calculated from the ratio of the two previously determined masses. The percent of the total VOC associated with the coating solids deposited on the panel in the controlled spray booth zone that is captured and delivered to the control device equals 100 minus this percentage. (The mass of VOC associated with the coating solids deposited on the panel which is volatilized and captured in the controlled spray booth zone equals the difference between the total mass of VOC associated with the coating solids deposited on the panel and the mass of VOC remaining with the coating solids deposited on the panel when the panel leaves the controlled spray booth zone.) 1.3.3 The percent of the total VOC associated with the coating sprayed in the controlled spray booth zone that is captured and delivered to the control device is assumed to be equal to the percent of the total VOC associated with the coating solids deposited on the panel in the controlled spray booth zone that is captured and delivered to the control device. The percent of the total VOC associated with the coating sprayed in the entire spray booth that is captured and delivered to the control device can be calculated by multiplying the percent of the total VOC associated with the coating sprayed in the controlled spray booth zone that is captured and delivered to the control device by the fraction of coating sprayed in the spray booth that is sprayed in the controlled spray booth zone. 2.0 Procedure. 2.1 You may conduct panel testing to determine the capture efficiency of spray booth emissions. You must follow the instructions and calculations in this appendix A, and use the panel testing procedures in ASTM Method D5087-02, "Standard Test Method for Determining Amount of Volatile Organic Compound (VOC) Released from Solventborne Automotive Coatings and Available for Removal in a VOC Control Device (Abatement)" (incorporated by ref-erence, see §63.14), or the guidelines pre-sented in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). You must weigh panels at the points described in section 2.5 of this appendix A and perform calculations as described in sections 3 and 4 of this appendix A. You may conduct panel tests on the production paint line in your facility or in a laboratory simulation of the production paint line in your facility. 2.2 You may conduct panel testing on representative coatings as described in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations, EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). If you panel test representative coatings, then you may calculate either a unique percent capture efficiency value for each coating grouped with that representative coating, or a composite percent capture efficiency value for the group of coatings. If you panel test each coating, then you must convert the panel test result for each coating to a unique percent capture efficiency value for that coating. 2.3 Identification of Controlled Spray Booth Zones. You must identify each controlled spray booth zone or each group of contiguous controlled spray booth zones to be tested. (For example, a controlled bell zone immediately followed by a controlled robotic zone.) Separate panel tests are required for non-contiguous controlled spray booth zones. The flash zone between the last basecoat zone and the first clearcoat zone makes these zones noncontiguous. 2.4 Where to Apply Coating to the Panel. If you are conducting a panel test for a single controlled spray booth zone, then you must apply coating to the panel only in that controlled spray booth zone. If you are conducting a panel test for a group of contiguous controlled spray booth zones, then you must apply coating to the panel only in that group of contiguous controlled spray booth zones 2.5 How to Process and When to Weigh the Panel. The instructions in this section pertain to panel testing of coating. i, or of the coating representing the group of coatings that includes coating, i. 2.5.1 You must weigh the blank panel. (Same as in bake oven panel test.) The mass of the blank panel is represented by Whank.i (grams). 2.5.2 Apply coating, i, or the coating representing coating, i, to the panel in the controlled spray booth zone or group of contiguous controlled spray booth zones being tested (in plant test), or in a simulation of the controlled spray booth zone or group of contiguous controlled spray booth zones being tested (laboratory test). 2.5.3 Remove and weigh the wet panel as soon as the wet panel leaves the controlled spray booth zone or group of contiguous controlled spray booth zones being tested. (Different than bake oven panel test.) This weighing must be conducted quickly to avoid further evaporation of VOC. The mass of the wet panel is represented by Wwe, (grams). 2.5.4 Return the wet panel to the point in the coating process or simulation of the coating process where it was removed for weighing. 2.5.5 Allow the panel to travel through the rest of the coating process in the plant or laboratory simulation of the coating process. You must not apply any more coating to the panel after it leaves the controlled spray booth zone (or group of contiguous controlled spray booth zones) being tested. The rest of the coating process or simulation of the coating process consists of: 2.5.5.1 All of the spray booth zone(s) or simulation of all of the spray booth zone(s) located after the controlled spray booth zone or group of contiguous controlled spray booth zones being tested and before the bake oven where the coating applied to the panel is cured. 2.5.5.2 All of the flash-off area(s) or simulation of all of the flash-off area(s) located after the controlled spray booth zone or group of contiguous controlled spray booth zones being tested and before the bake oven where the coating applied to the panel is cured, and 2.5.5.3 The bake oven or simulation of the bake oven where the coating applied to the panel is cured. 2.5.6 After the panel exits the bake oven. you must cool and weigh the baked panel. (Same as in bake oven panel
test.) The mass of the baked panel is represented by Wbaketi (grams). 3.0 Panel Calculations. The instructions in this section pertain to panel testing of coating, i, or of the coating representing the group of coatings that includes coating, i. 3.1 The mass of coating solids (from coating, i, or from the coating representing coating, i, in the panel test) deposited on the panel equals the mass of the baked panel minus the mass of the blank panel as shown in Equation A-1. $$W_{sdep,i} = W_{baked,i} - W_{blank,i}$$ (Eq. A-1) Where: W_{skep. i} = Mass of coating solids (from coating, i, or from the coating representing coating, i, in the panel test) deposited on the panel, grams. 3.2 The mass of VOC (from coating, i, or from the coating representing coating, i, in the panel test) remaining on the wet panel when the wet panel leaves the controlled spray booth zone or group of contiguous controlled spray booth zones being tested equals the mass of the wet panel when the wet panel leaves the controlled spray booth zone or group of contiguous controlled spray booth zones being tested minus the mass of the baked panel as shown in Equation A-2. $$W_{\text{rem,i}} = W_{\text{wet,i}} - W_{\text{baked,i}}$$ (Eq. A-2) W_{Nrm. i} = Mass of VOC (from coating, i, or from the coating representing coating, i, in the panel test) remaining on the wet panel when the wet panel leaves the controlled spray booth zone or group of contiguous controlled spray booth zones being tested, grams. 3.3 Calculate the mass of VOC (from coating, i, or from the coating representing coating, i, in the panel test) remaining on the wet panel when the wet panel leaves the controlled spray booth zone or group of contiguous controlled spray booth zones being tested per mass of coating solids deposited on the panel as shown in Equation A-3. $$P_{m,i} = (W_{rem,i})/(W_{sdep,i})$$ (Eq. A-3) Where: P_{m, i} = Mass of VOC (from coating, i, or from the coating representing coating, i, in the panel test) remaining on the wet panel when the wet panel leaves the controlled spray booth zone or group of contiguous controlled spray booth zones being tested per mass of coating solids deposited on the panel, grams of VOC remaining per gram of coating solids deposited. W_{rem. i} = Mass of VOC (from coating, i, or from the coating representing coating, i. in the panel test) remaining on the wet panel when the wet panel leaves the controlled spray booth zone or group of contiguous controlled spray booth zones being tested, grams. W. dep. i = Mass of coating solids (from coating, i, or from the coating representing coating, i, in the panel test) deposited on the panel, grams. 4.0 Converting Panel Result to Percent Capture. The instructions in this section pertain to panel testing of for coating, i. or of the coating representing the group of coatings that includes coating, i. 4.1 If you panel test representative coatings, then you may convert the panel test result for each representative coating from section 3.3 of this appendix A either to a unique percent capture efficiency value for each coating grouped with that representative coating by using coating specific values for the mass fraction coating solids and mass fraction VOC in section 4.2 of this appendix A, or to a composite percent capture efficiency value for the group of coatings by using the average values for the group of coatings for mass fraction coating solids and mass fraction VOC in section 4.2 of this appendix A. If you panel test each coating, then you must convert the panel test result for each coating to a unique percent capture efficiency value by using coating specific values for the mass fraction coating solids and mass fraction VOC in section 4.2 of this appendix A. The mass fraction of VOC in the coating and the mass fraction of solids in the coating must be determined by Method 24 (appendix A to 40 CFR part 60) or by following the guidelines for combining analytical VOC content and formulation solvent content presented in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). 4.2 The percent of VOC for coating, i, or composite percent of VOC for the group of coatings including coating, i, associated with the coating solids deposited on the panel that remains on the wet panel when the wet panel leaves the controlled spray booth zone or group of contiguous controlled spray booth zones being tested is calculated using Equation A-4. $$Pvoc_{pan,i} = (P_{m,i})(W_{s,i})(100)/(Wvoc_{c,i})$$ (Eq. A-4) Where: Pvoc_{pan. i} = Percent of VOC for coating, i, or composite percent of VOC for the group of coatings including coating, i, associated with the coating solids deposited on the panel that remains on the wet panel when the wet panel leaves the controlled spray booth zone (or group of contiguous controlled spray booth zones) being tested, percent. P_{m. i} = Mass of VOC (from coating, i, or from the coating representing coating, i, in the panel test) remaining on the wet panel when the wet panel leaves the controlled spray booth zone or group of contiguous controlled spray booth zones being tested per mass of coating solids deposited on the panel, grams of VOC remaining per gram of coating solids deposited. Wa, i = Mass fraction of coating solids for coating, i, or average mass fraction of coating solids for the group of coatings including coating, i, grams coating solids per gram coating, determined by Method 24 (appendix A to 40 CFR part 60) or by following the guidelines for combining analytical VOC content and formulation solvent content presented in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Topcoat Operations," EPA-4503-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001- Wvoc. I = Mass fraction of VOC in coating, i. or average mass fraction of VOC for the group of coatings including coating, i, grams VOC per grams coating, determined by Method 24 (appendix A to 40 CFR part 60) or the guidelines for combining analytical VOC content and formulation solvent content presented in "Protocol for Determining Daily Volatile Organic Compound Emission Rate of Automobile and Light-Duty Truck Top- coat Operations," EPA-450/3-88-018 (Docket ID No. OAR-2002-0093 and Docket ID No. A-2001-22). 4.3 The percent of VOC for coating, i, or composite percent of VOC for the group of coatings including coating, i, associated with the coating sprayed in the controlled spray booth zone (or group of contiguous controlled spray booth zones) being tested that is captured in the controlled spray booth zone or group of contiguous controlled spray booth zones being tested, CE_{med} (percent), is calculated using Equation A-5. $$CE_{zone,i} = 100 - Pvoc_{pan,i}$$ (Eq. A-5) Where CE. Capture efficiency for coating, i, or for the group of coatings including coating, i, in the controlled spray booth zone or group of contiguous controlled spray booth zones being tested as a percentage of the VOC in the coating, i, or of the group of coatings including coating, i, sprayed in the controlled spray booth zone or group of contiguous controlled spray booth zones being tested, percent. 4.4 Calculate the percent of VOC for coating, i, or composite percent of VOC for the group of coatings including coating, i, associated with the entire volume of coating, i, or with the total volume of all of the coatings grouped with coating, i, sprayed in the entire spray booth that is captured in the controlled spray booth zone or group of contiguous controlled spray booth zones being tested, using Equation A-6. The volume of coating. i, or of the group of coatings includ-ing coating, I, sprayed in the controlled spray booth zone or group of contiguous controlled spray booth zones being tested, and the volume of coating, i, or of the group of coatings including coating, i, sprayed in the entire spray booth may be determined from gun on times and fluid flow rates or from direct measurements of coating usage. $$CE_i = (CE_{zone,i})(V_{zone,i})/(V_{booth,i})$$ S(Eq. A-6) Where: CE_i = Capture efficiency for coating, i, or for the group of coatings including coating. i, in the controlled spray booth zone (or group of contiguous controlled spray booth zones) being tested as a percentage of the VOC in the coating, i, or of the group of coatings including coating, i, sprayed in the entire spray booth in which the controlled spray booth zone (or group of contiguous controlled spray booth zones) being tested, percent. V_{resc. i} = Volume of coating, i, or of the group of coatings including coating, i, sprayed in the controlled spray booth zone or group of contiguous controlled spray booth zones being tested, liters. V_{booth, i} = Volume of coating, i, or of the group of coatings including coating, i, sprayed in the entire spray booth containing the controlled spray booth zone (or group of contiguous controlled spray booth zones) being tested, liters. 4.5 If you conduct multiple panel tests for the same coating or same group of coatings in the same spray booth (either because the coating or group of coatings is controlled in non-contiguous zones of the spray booth, or because you choose to conduct separate panel tests for contiguous controlled spray booth zones), then you may add the result from section 4.4 for each such panel test to get the total capture efficiency for the coating or group of coatings over all of the controlled zones in the spray booth for the coating or group of coatings. ## Subpart JJJJ—National Emission Standards for Hazardous Air Pollutants: Paper and Other Web Coating SOURCE: 67 FR 72341. Dec. 4, 2002, unless otherwise noted. WHAT THIS SUBPART COVERS #### § 63.3280 What is in this subpart? This subpart describes the actions you must take to reduce emissions of organic hazardous air pollutants (HAP) from paper and other
web coating operations. This subpart establishes emission standards for web coating lines and specifies what you must do to comply if you own or operate a facility with web coating lines that is a major source of HAP. Certain requirements apply to all who are subject to this subpart; others depend on the means you use to comply with an emission standard. # §63.3290 Does this subpart apply to me? The provisions of this subpart apply to each new and existing facility that is a major source of HAP, as defined in §63.2, at which web coating lines are operated. # § 63.3300 Which of my emission sources are affected by this subpart? The affected source subject to this subpart is the collection of all web coating lines at your facility. This includes web coating lines engaged in the coating of metal webs that are used in flexible packaging, and web coating lines engaged in the coating of fabric substrates for use in pressure sensitive tape and abrasive materials. Web coating lines specified in paragraphs (a) through (g) of this section are not part of the affected source of this subpart. - (a) Any web coating line that is stand-alone equipment under subpart KK of this part (National Emission Standards for the Printing and Publishing Industry) which the owner or operator includes in the affected source under subpart KK. - (b) Any web coating line that is a product and packaging rotogravure or wide-web flexographic press under subpart KK of this part (national emission standards for the printing and publishing industry) which is included in the affected source under subpart KK. - (c) Web coating in lithography, screenprinting, letterpress, and narrow-web flexographic printing processes. - (d) Any web coating line subject to subpart EE of this part (national emission standards for magnetic tape manufacturing operations). - (e) Any web coating line that will be subject to the national emission standards for hazardous air pollutants (NESHAP) for surface coating of metal coil currently under development. - (f) Any web coating line that will be subject to the NESHAP for the printing, coating, and dyeing of fabric and other textiles currently under development. This would include any web coating line that coats both a paper or other web substrate and a fabric or other textile substrate, except for a fabric substrate used for pressure sensitive tape and abrasive materials. - (g) Any web coating line that is defined as research or laboratory equipment in §63.3310. [67 FR 72341, Dec. 4, 2002, as amended at 71 FR 29805, May 24, 2006]